770 research outputs found
Measurement of the two-photon absorption cross-section of liquid argon with a time projection chamber
This paper reports on laser-induced multiphoton ionization at 266 nm of
liquid argon in a time projection chamber (LAr TPC) detector. The electron
signal produced by the laser beam is a formidable tool for the calibration and
monitoring of next-generation large-mass LAr TPCs. The detector that we
designed and tested allowed us to measure the two-photon absorption
cross-section of LAr with unprecedented accuracy and precision:
sigma_ex=(1.24\pm 0.10stat \pm 0.30syst) 10^{-56} cm^4s{-1}.Comment: 15 pages, 9 figure
RIP1-HAT1-SirT complex identification and targeting in treatment and prevention of cancer
Purpose: Alteration in cell death is a hallmark of cancer. A functional role regulating survival, apoptosis, and necroptosis has been attributed to RIP1/3 complexes.Experimental Design: We have investigated the role of RIP1 and the effects of MC2494 in cell death induction, using different methods as flow cytometry, transcriptome analysis, immunoprecipitation, enzymatic assays, transfections, mutagenesis, and in vivo studies with different mice models.Results: Here, we show that RIP1 is highly expressed in cancer, and we define a novel RIP1/3-SIRT1/2-HAT1/4 complex. Mass spectrometry identified five acetylations in the kinase and death domain of RIP1. The novel characterized pan-SIRT inhibitor, MC2494, increases RIP1 acetylation at two additional sites in the death domain. Mutagenesis of the acetylated lysine decreases RIP1-dependent cell death, suggesting a role for acetylation of the RIP1 complex in cell death modulation. Accordingly, MC2494 displays tumor-selective potential in vitro, in leukemic blasts ex vivo, and in vivo in both xenograft and allograft cancer models. Mechanistically, MC2494 induces bona fide tumor-restricted acetylated RIP1/caspase-8-mediated apoptosis. Excitingly, MC2494 displays tumor-preventive activity by blocking 7,12-dimethylbenz(α)anthracene-induced mammary gland hyperproliferation in vivoConclusions: These preventive features might prove useful in patients who may benefit from a recurrence-preventive approach with low toxicity during follow-up phases and in cases of established cancer predisposition. Thus, targeting the newly identified RIP1 complex may represent an attractive novel paradigm in cancer treatment and prevention
Deregulation of cell death in cancer: Recent highlights
The aim of this Special Issue on the deregulation of cell death in cancer is to bring together recent perspectives on the relationship between tumorigenesis and programmed cell death (PCD) [...]
The GINGER Project and status of the ring-laser of LNGS
A ring-laser attached to the Earth measures the absolute angular velocity of the Earth summed
to the relativistic precessions, de Sitter and Lense-Thirring. GINGER (Gyroscopes IN GEneral
Relativity) is a project aiming at measuring the LenseThirring effect with a ground based detector;
it is based on an array of ring-lasers. Comparing the Earth angular velocity measured
by IERS and the measurement done with the GINGER array, the Lense-Thirring effect can be
evaluated. Compared to the existing space experiments, GINGER provides a local measurement,
not the averaged value and it is unnecessary to model the gravitational field. It is a proposal,
but it is not far from being a reality. In fact the GrossRing G of the Geodesy Observatory of
Wettzell has a sensitivity very close to the necessary one. G ofWettzell is part of the IERS system
which provides the measure of the Length Of the DAY (LOD); G provides information on the fast
component of LOD. In the last few years, a roadmap toward GINGER has been outlined. The
experiment G-GranSasso, financed by the INFN Commission II, is developing instrumentations
and tests along the roadmap of GINGER. In this short paper the main activities of G-GranSasso
and some results will be presented. The first results of GINGERino will be reported, GINGERino
is the large ring-laser installed inside LNGS and now in the commissioning phase. Ring-lasers
provide as well important informations for geophysics, in particular the rotational seismology,
which is an emerging field of science. GINGERino is one of the three experiments of common
interest between INFN and INGV
Novel antiproliferative chimeric compounds with marked histone deacetylase inhibitory activity
Given our interest in finding potential antitumor agents and in view of the multifactorial mechanistic nature of cancer, in the present work, taking advantage of the multifunctional ligands approach, new chimeric molecules were designed and synthesized by combining in single chemical entities structural features of SAHA, targeting histone deacetylases (HDACs), with substituted stilbene or terphenyl derivatives previously obtained by us and endowed with antiproliferative and pro-apoptotic activity. The new chimeric derivatives were characterized with respect to their cytotoxic activity and their effects on cell cycle progression on different tumor cell lines, as well as their HDACs inhibition. Among the other, trans -6 showed the most interesting biological profile, as it exhibited a strong pro-apoptotic activity in tumor cell lines in comparison with both of its parent compounds and a marked HDAC inhibition
Design of dual inhibitors of histone deacetylase 6 and heat shock protein 90
Histone deacetylase 6 (HDAC6) and heat shock protein 90 (Hsp90) are widely investigated anticancer drug targets. Importantly, several lines of evidence indicate that their regulation and activity are intimately linked, and that their combined inhibition may lead to impressive therapeutic benefits. In this study, we developed and applied an integrated computational strategy to design dual inhibitors of HDAC6 and Hsp90. Although the two targets share very little homology, an integrated ligand-based and structure-based virtual screening approach indicated a subset of compounds possessing the key structural requirements for binding at both targets. In vitro tests demonstrated that some of the selected candidates are able to selectively inhibit HDAC6 over HDAC1, to increase the acetylation levels of tubulin on cell assays and to reduce cell proliferation. The discovered compounds represent valuable starting points for further hit optimization
Single-Cell Photothermal Analysis Induced by MoS2 Nanoparticles by Raman Spectroscopy
Two-dimensional nanomaterials, such as MoS2 nanosheets, have been attracting increasing attention in cancer diagnosis and treatment, thanks to their peculiar physical and chemical properties. Although the mechanisms which regulate the interaction between these nanomaterials and cells are not yet completely understood, many studies have proved their efficient use in the photothermal treatment of cancer, and the response to MoS2 nanosheets at the single-cell level is less investigated. Clearly, this information can help in shedding light on the subtle cellular mechanisms ruling the interaction of this 2D material with cells and, eventually, to its cytotoxicity. In this study, we use confocal micro-Raman spectroscopy to reconstruct the thermal map of single cells targeted with MoS2 under continuous laser irradiation. The experiment is performed by analyzing the water O-H stretching band around 3,400 cm−1 whose tetrahedral structure is sensitive to the molecular environment and temperature. Compared to fluorescence-based approaches, this Raman-based strategy for temperature measurement does not suffer fluorophore instability, which can be significant under continuous laser irradiation. We demonstrate that irradiation of human breast cancer MCF7 cells targeted with MoS2 nanosheets causes a relevant photothermal effect, which is particularly high in the presence of MoS2 nanosheet aggregates. Laser-induced heating is strongly localized near such particles which, in turn, tend to accumulate near the cytoplasmic membrane. Globally, our experimental outcomes are expected to be important for tuning the nanosheet fabrication process
A combinatorial approach to gene expression analysis: DNA microarrays.
The microarray technology is based on analytical tools that parallelize the quantitative and qualitative analysis of nucleic acids, proteins and tissue sections one of its more recent evolutions-. By miniaturizing the size of the reaction and sensing area, microarrays allow to assess at the activity of thousands of genes in a given tissue or cell line at once in a rapid and quantitative way, and to carry out serial comparative tests in multiple samples. These tools, that stem from the innovations resulting from the technological improvements and knowledge arising from the genome sequencing projects, can be considered as a combinatorial technique that can rapidly provide significant information about complex cellular pathways and processes within one or few ‘‘mass scale’’ and comprehensive testing of a biological sample’s composition
Molecular docking simulations on histone deacetylases (Hdac)-1 and-2 to investigate the flavone binding
Histone modifications through acetylation are fundamental for remodelling chromatin and consequently activating gene expression. The imbalance between acetylation and deacetylation activity causes transcriptional dysregulation associated with several disorders. Flavones, small molecules of plant origin, are known to interfere with class I histone deacetylase (HDAC) enzymes and to enhance acetylation, restoring cell homeostasis. To investigate the possible physical interactions of flavones on human HDAC1 and 2, we carried out in silico molecular docking simulations. Our data have revealed how flavone, and other two flavones previously investigated, i.e., apigenin and luteolin, can interact as ligands with HDAC1 and 2 at the active site binding pocket. Regulation of HDAC activity by dietary flavones could have important implications in developing epigenetic therapy to regulate the cell gene expression
KDM4 Involvement in Breast Cancer and Possible Therapeutic Approaches
Breast cancer (BC) is the second leading cause of cancer death in women, although recent scientific and technological achievements have led to significant improvements in progression-free disease and overall survival of patients. Genetic mutations and epigenetic modifications play a critical role in deregulating gene expression, leading to uncontrolled cell proliferation and cancer progression. Aberrant histone modifications are one of the most frequent epigenetic mechanisms occurring in cancer. In particular, methylation and demethylation of specific lysine residues alter gene accessibility via histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The KDM family includes more than 30 members, grouped into six subfamilies and two classes based on their sequency homology and catalytic mechanisms, respectively. Specifically, the KDM4 gene family comprises six members, KDM4A-F, which are associated with oncogene activation, tumor suppressor silencing, alteration of hormone receptor downstream signaling, and chromosomal instability. Blocking the activity of KDM4 enzymes renders them “druggable” targets with therapeutic effects. Several KDM4 inhibitors have already been identified as anticancer drugs in vitro in BC cells. However, no KDM4 inhibitors have as yet entered clinical trials due to a number of issues, including structural similarities between KDM4 members and conservation of the active domain, which makes the discovery of selective inhibitors challenging. Here, we summarize our current knowledge of the molecular functions of KDM4 members in BC, describe currently available KDM4 inhibitors, and discuss their potential use in BC therapy
- …
