1,228 research outputs found
Non perturbative regularization of one loop integrals at finite temperature
A method devised by the author is used to calculate analytical expressions
for one loop integrals at finite temperature. A non-perturbative regularization
of the integrals is performed, yielding expressions of non-polynomial nature. A
comparison with previuosly published results is presented and the advantages of
the present technique are discussed.Comment: 7 pages, 2 figures, 2 tables; corrected some typos and simplified eq.
(8
Further analysis of the connected moments expansion
We apply the connected moments expansion to simple quantum--mechanical
examples and show that under some conditions the main equations of the approach
are no longer valid. In particular we consider two--level systems, the harmonic
oscillator and the pure quartic oscillator.Comment: 19 pages; 2 tables; 4 figure
Materials and techniques for spacecraft static charge control
An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage
Inversion of perturbation series
We investigate the inversion of perturbation series and its resummation, and
prove that it is related to a recently developed parametric perturbation
theory. Results for some illustrative examples show that in some cases series
reversion may improve the accuracy of the results
Influence of nucleonic motion in Relativistic Fermi Gas inclusive responses
Impulsive hadronic descriptions of electroweak processes in nuclei involve
two distinctly different elements: one stems from the nuclear many-body physics
--- the medium --- which is rather similar for the various inclusive response
functions, and the other embodies the responses of the hadrons themselves to
the electroweak probe and varies with the channel selected. In this letter we
investigate within the context of the relativistic Fermi gas in both the
quasi-elastic and regimes the interplay between these two
elements. Specifically, we focus on expansions in the one small parameter in
the problem, namely, the momentum of a nucleon in the initial wave function
compared with the hadronic scale, the nucleon mass. Both parity-conserving and
-violating inclusive responses are studied and the interplay between
longitudinal () and transverse ( and ) contributions is highlighted.Comment: 11 pages, 1 figur
The confined hydrogen atom with a moving nucleus
We study the hydrogen atom confined to a spherical box with impenetrable
walls but, unlike earlier pedagogical articles on the subject, we assume that
the nucleus also moves. We obtain the ground-state energy approximately by
means of first--order perturbation theory and by a more accurate variational
approach. We show that it is greater than the one for the case in which the
nucleus is clamped at the center of the box. Present approach resembles the
well-known treatment of the helium atom with clamped nucleus
A new representation for non--local operators and path integrals
We derive an alternative representation for the relativistic non--local
kinetic energy operator and we apply it to solve the relativistic Salpeter
equation using the variational sinc collocation method. Our representation is
analytical and does not depend on an expansion in terms of local operators. We
have used the relativistic harmonic oscillator problem to test our formula and
we have found that arbitrarily precise results are obtained, simply increasing
the number of grid points. More difficult problems have also been considered,
observing in all cases the convergence of the numerical results. Using these
results we have also derived a new representation for the quantum mechanical
Green's function and for the corresponding path integral. We have tested this
representation for a free particle in a box, recovering the exact result after
taking the proper limits, and we have also found that the application of the
Feynman--Kac formula to our Green's function yields the correct ground state
energy. Our path integral representation allows to treat hamiltonians
containing non--local operators and it could provide to the community a new
tool to deal with such class of problems.Comment: 9 pages ; 1 figure ; refs added ; title modifie
Spectroscopy of drums and quantum billiards: perturbative and non-perturbative results
We develop powerful numerical and analytical techniques for the solution of
the Helmholtz equation on general domains. We prove two theorems: the first
theorem provides an exact formula for the ground state of an arbirtrary
membrane, while the second theorem generalizes this result to any excited state
of the membrane. We also develop a systematic perturbative scheme which can be
used to study the small deformations of a membrane of circular or square
shapes. We discuss several applications, obtaining numerical and analytical
results.Comment: 29 pages, 12 figures, 7 tabl
Reply to "Comment on 'Quantization of FRW spacetimes in the presence of a cosmological constant and radiation'"
The Comment by Amore {\it et al.} [gr-qc/0611029] contains a valid criticism
of the numerical precision of the results reported in a recent paper of ours
[Phys. Rev. D {\bf 73}, 044022 (2006)], as well as fresh ideas on how to
characterize a quantum cosmological singularity. However, we argue that,
contrary to what is suggested in the Comment, the quantum cosmological models
we studied show hardly any sign of singular behavior.Comment: 4 pages, accepted by Physical Review
- …
