12,333 research outputs found

    Coupled-channel calculation of bound and resonant spectra of Lambda-9Be and Lambda-13C hypernuclei

    Full text link
    A Multi-Channel Algebraic Scattering (MCAS) approach has been used to analyze the spectra of two hyper-nuclear systems, Lambda-9Be and Lambda-13C. The splitting of the two odd-parity excited levels (1/2^- and 3/2^-) at 11 MeV excitation in Lambda-13C is driven mainly by the weak Lambda-nucleus spin-orbit force, but the splittings of the 3/2^+ and 5/2^+ levels in both Lambda-9Be and Lambda-13C have a different origin. These cases appear to be dominated by coupling to the collective 2+ states of the core nuclei. Using simple phenomenological potentials as input to the MCAS method, the observed splitting and level ordering in Lambda-9Be is reproduced with the addition of a weak spin-spin interaction acting between the hyperon and the spin of the excited target. With no such spin-spin interaction, the level ordering in Lambda-9Be is inverted with respect to that currently observed. In both hyper-nuclei, our calculations suggest that there are additional low-lying resonant states in the Lambda-nucleus continua.Comment: 15 pages, 3 figures, 6 tables. To be published in International Journal of Modern Physics

    Collective-coupling analysis of spectra of mass-7 isobars: ^7He, ^7Li, ^7Be, ^7B

    Get PDF
    A nucleon-nucleus interaction model has been applied to ascertain the underlying character of the negative-parity spectra of four isobars of mass seven, from neutron-- to proton--emitter driplines. With one single nuclear potential defined by a simple coupled-channel model, a multichannel algebraic scattering approach (MCAS) has been used to determine the bound and resonant spectra of the four nuclides, of which ^7He and ^7B are particle unstable. Incorporation of Pauli blocking in the model enables a description of all known spin-parity states of the mass-7 isobars. We have also obtained spectra of similar quality by using a large space no-core shell model. Additionally, we have studied ^7Li and ^7Be using a dicluster model. We have found a dicluster-model potential that can reproduce the lowest four states of the two nuclei, as well as the relevant low-energy elastic scattering cross sections. But, with this model, the rest of the energy spectra cannot be obtained.Comment: Extended version published in Phys. Rev. C, 16 pages and 5 figure

    The Soul of Islam.

    Get PDF

    Non-localities in nucleon-nucleus potentials

    Full text link
    Two causes of non-locality inherent in nucleon-nucleus scattering are considered. They are the results of two-nucleon antisymmetry of the projectile with each nucleon in the nucleus and the dynamic polarization potential representation of channel coupling. For energies 40300\sim 40 - 300 MeV, a g-folding model of the optical potential is used to show the influence of the knock-out process that is a result of the two-nucleon antisymmetry. To explore the dynamic polarization potential caused by channel coupling, a multichannel algebraic scattering model has been used for low-energy scattering.Comment: 12 pages, 11 figures, submitted to EPJ

    Modeling, Analysis, and Optimization Issues for Large Space Structures

    Get PDF
    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design
    corecore