143 research outputs found
Searches for neutrino counterparts of gravitational waves from the LIGO/Virgo third observing run with KM3NeT
The KM3NeT neutrino telescope is currently being deployed at two different sites in the Mediterranean Sea. First searches for astrophysical neutrinos have been performed using data taken with the partial detector configuration already in operation. The paper presents the results of two independent searches for neutrinos from compact binary mergers detected during the third observing run of the LIGO and Virgo gravitational wave interferometers. The first search looks for a global increase in the detector counting rates that could be associated with inverse beta decay events generated by MeV-scale electron anti-neutrinos. The second one focuses on upgoing track-like events mainly induced by muon (anti-)neutrinos in the GeV–TeV energy range. Both searches yield no significant excess for the sources in the gravitational wave catalogs. For each source, upper limits on the neutrino flux and on the total energy emitted in neutrinos in the respective energy ranges have been set. Stacking analyses of binary black hole mergers and neutron star-black hole mergers have also been performed to constrain the characteristic neutrino emission from these categories.The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Européenne (FEDER fund and Marie Curie Program), LabEx UniJCAP04(2024)026– 20vEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Île-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-22-13708), Georgia; The General Secretariat of Research and Innovation (GSRI), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Università e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Innovation, Morocco, and the Arab Fund for Economic and Social Development, Kuwait; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2021/41/N/ST2/01177); The grant “AstroCeNT: Particle Astrophysics Science and Technology Centre”, carried out within the International Research Agendas programme of the Foundation for Polish Science financed by the European Union under the European Regional Development Fund; National Authority for Scientific Research (ANCS), Romania; Grants PID2021-124591NB-C41,-C42,-C43 funded by MCIN/AEI/ 10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”, Programa de Planes Complementarios I+D+I (refs. ASFAE/2022/023, ASFAE/2022/014), Programa Prometeo (PROMETEO/2020/019) and GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049. /2021/23) of the Generalitat Valenciana, Junta de Andalucía (ref. SOMM17/6104/UGR, P18FR-5057), EU: MSC program (ref. 101025085), Programa María Zambrano (Spanish Ministry of Universities, funded by the European Union, NextGenerationEU), Spain; The European Union’s Horizon 2020 Research and Innovation Programme (ChETEC-INFRA — Project no. 101008324); Fonds de la Recherche Scientifique — FNRS, Belgium; Francqui foundation.Article signat per 275 autors/es: S. Aiello, A. Albert, S. Alves Garre, Z. Aly, A. Ambrosone, F. Ameli, M. Andre, E. Androutsou, M. Anguita, L. Aphecetche, M. Ardid, S. Ardid, H. Atmani, J. Aublin, L. Bailly-Salins, Z. Bardačová, B. Baret, A. Bariego-Quintana, S. Basegmez du Pree, Y. Becherini, M. Bendahman, F. Benfenati, M. Benhassi, D.M. Benoit, E. Berbee, V. Bertin, S. Biagi, M. Boettcher, D. Bonanno, J. Boumaaza, M. Bouta, M. Bouwhuis, C. Bozza, R.M. Bozza, H. Brânzaş, F. Bretaudeau, R. Bruijn, J. Brunner, R. Bruno, E. Buis, R. Buompane, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, F. Carenini, V. Carretero, T. Cartraud, P. Castaldi, V. Cecchini, S. Celli, L. Cerisy, M. Chabab, M. Chadolias, A. Chen, S. Cherubini, T. Chiarusi, M. Circella, R. Cocimano, J.A.B. Coelho, A. Coleiro, R. Coniglione, P. Coyle, A. Creusot, G. Cuttone, R. Dallier, Y. Darras, A. De Benedittis, B. De Martino, G. De Wasseige, V. Decoene, R. Del Burgo, I. Del Rosso, U.M. Di Cerbo, L.S. Di Mauro, I. Di Palma, A.F. Díaz, C. Diaz, D. Diego-Tortosa, C. Distefano, A. Domi, C. Donzaud, D. Dornic, M. Dörr, E. Drakopoulou, D. Drouhin, R. Dvornický, T. Eberl, E. Eckerová, A. Eddymaoui, T. van Eeden, M. Eff, D. van Eijk, I. El Bojaddaini, S. El Hedri, A. Enzenhöfer, G. Ferrara, M.D. Filipović, F. Filippini, D. Franciotti, L.A. Fusco, J. Gabriel, S. Gagliardini, T. Gal, J. García Méndez, A. Garcia Soto, C. Gatius Oliver, N. Geißelbrecht, H. Ghaddari, L. Gialanella, B.K. Gibson, E. Giorgio, I. Goos, P. Goswami, D. Goupilliere, S.R. Gozzini, R. Gracia, K. Graf, C. Guidi, B. Guillon, M. Gutiérrez, H. van Haren, A. Heijboer, A. Hekalo, L. Hennig, J.J. Hernández-Rey, W. Idrissi Ibnsalih, G. Illuminati, M. de Jong, P. de Jong, B.J. Jung, P. Kalaczyński, O. Kalekin, U.F. Katz, A. Khatun, G. Kistauri, C. Kopper, A. Kouchner, V. Kueviakoe, V. Kulikovskiy, R. Kvatadze, M. Labalme, R. Lahmann, M. Lamoureux, G. Larosa, C. Lastoria, A. Lazo, S. Le Stum, G. Lehaut, E. Leonora, N. Lessing, G. Levi, M. Lindsey Clark, F. Longhitano, J. Majumdar, L. Malerba, F. Mamedov, J. Mańczak, A. Manfreda, M. Marconi, A. Margiotta, A. Marinelli, C. Markou, L. Martin, J.A. Martínez-Mora, F. Marzaioli, M. Mastrodicasa, S. Mastroianni, S. Miccichè, G. Miele, P. Migliozzi, E. Migneco, M.L. Mitsou, C.M. Mollo, L. Morales-Gallegos, M. Morga, A. Moussa, I. Mozun Mateo, R. Muller, M.R. Musone, M. Musumeci, S. Navas, A. Nayerhoda, C.A. Nicolau, B. Nkosi, B. Ó Fearraigh, V. Oliviero, A. Orlando, E. Oukacha, D. Paesani, J. Palacios González, G. Papalashvili, V. Parisi, E.J. Pastor Gomez, A.M. Păun, G.E. Păvălaş, S. Peña Martínez, M. Perrin-Terrin, J. Perronnel, V. Pestel, R. Pestes, P. Piattelli, C. Poirè, V. Popa, T. Pradier, J. Prado, S. Pulvirenti, G. Quéméner, C.A. Quiroz-Rangel, U. Rahaman, N. Randazzo, R. Randriatoamanana, S. Razzaque, I.C. Rea, D. Real, G. Riccobene, J. Robinson, A. Romanov, A. Šaina, F. Salesa Greus, D.F.E. Samtleben, A. Sánchez Losa, S. Sanfilippo, M. Sanguineti, C. Santonastaso, D. Santonocito, P. Sapienza, J. Schnabel, J. Schumann, H.M. Schutte, J. Seneca, N. Sennan, B. Setter, I. Sgura, R. Shanidze, A. Sharma, Y. Shitov, F. Šimkovic, A. Simoneli, A. Sinopoulou, M.V. Smirnov, B. Spisso, M. Spurio, D. Stavropoulos, I. Štekl, M. Taiuti, Y. Tayalati, H. Thiersen, I. Tosta e Melo, E. Tragia, B. Trocmé, V. Tsourapis, E. Tzamariudaki, A. Vacheret, A. Valer Melchor, V. Valsecchi, V. Van Elewyck, G. Vannoye, G. Vasileiadis, F. Vazquez de Sola, C. Verilhac, A. Veutro, S. Viola, D. Vivolo, J. Wilms, E. de Wolf, H. Yepes-Ramirez, G. Zarpapis, S. Zavatarelli, A. Zegarelli, D. Zito, J.D. Zornoza, J. Zúñiga, N. ZywuckaPostprint (published version
Atmospheric muons measured with the KM3NeT detectors in comparison with updated numeric predictions
The measurement of the flux of muons produced in cosmic ray air showers is essential for the study of primary cosmic rays. Such measurements are important in extensive air shower detectors to assess the energy spectrum and the chemical composition of the cosmic ray flux, complementary to the information provided by fluorescence detectors. Detailed simulations of the cosmic ray air showers are carried out, using codes such as CORSIKA, to estimate the muon flux at sea level. These simulations are based on the choice of hadronic interaction models, for which improvements have been implemented in the post-LHC era. In this work, a deficit in simulations that use state-of-the-art QCD models with respect to the measurement deep underwater with the KM3NeT neutrino detectors is reported. The KM3NeT/ARCA and KM3NeT/ORCA neutrino telescopes are sensitive to TeV muons originating mostly from primary cosmic rays with energies around 10 TeV. The predictions of state-of-the-art QCD models show that the deficit with respect to the data is constant in zenith angle; no dependency on the water overburden is observed. The observed deficit at a depth of several kilometres is compatible with the deficit seen in the comparison of the simulations and measurements at sea level.The authors acknowledge the financial support of the funding agencies: Czech Science Foundation (GAˇ CR 24-12702S); Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre NationaldelaRechercheScientifique(CNRS),CommissionEuropéenne (FEDER fund and Marie Curie Program), LabEx UnivEarthS (ANR10-LABX-0023andANR-18-IDEX-0001),ParisÎle-de-FranceRegion, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG,FR-22-13708),Georgia;TheGeneralSecretariatofResearch and Innovation (GSRI), Greece; Istituto Nazionale di Fisica Nucleare (INFN) and Ministero dell’Università e della Ricerca (MUR), through PRIN 2022 program (Grant PANTHEON 2022E2J4RK, Next Generation EU, Grant ALICA 2022A7ZC3K) and PON R&I program (Avviso n. 424 del 28 febbraio 2018, Progetto PACK-PIR01 00021), Italy; A. De Benedittis, R. Del Burgo, W. Idrissi Ibnsalih, A. Nayerhoda, G. Papalashvili, I. C. Rea, S. Santanastaso, A. Simonelli have been supported by the Italian Ministero dell’Università e della Ricerca (MUR), Progetto CIR01 00021 (Avviso n. 2595 del 24 dicembre 2019); Ministry of Higher Education, Scientific Research and Innovation, Morocco, and the Arab Fund for EconomicandSocialDevelopment, Kuwait; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2021/41/N/ST2/01177); The grant “AstroCeNT: Particle Astrophysics Science and Technology Centre”, carried out within the International Research Agendas programme of the Foundation for Polish Science f inanced by the European Union under the European Regional Development Fund; National Authority for Scientific Research (ANCS), Romania; MCIN for PID2021-124591NB-C41,-C42,-C43, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, for ASFAE/2022/014, ASFAE/2022 /023, with funding from the EU NextGenerationEU (PRTR-C17.I01), Generalitat Valenciana, and for CSIC-INFRA23013, Generalitat Valenciana for PROMETEO/2020/019, for Grant AST22_6.2 with funding from Consejería de Universidad, Investigación e Innovación and Gobierno de España and European Union- NextGenerationEU, for CIDEGENT/2018/034, /2019/043, /2020/049, /2021/23 and for GRISOLIAP/2021/192 and EUfor MSC/101025085, Spain; The European Union’s Horizon 2020 Research and Innovation Programme (ChETEC-INFRA- Project no. 101008324).Peer ReviewedArticle signat per 276 autors/es: KM3NeT Collaboration: S. Aiello, A. Albert, M. Alshamsi, S. Alves Garre, A. Ambrosone, F. Ameli, M. Andre, E. Androutsou, M. Anguita, L. Aphecetche, M. Ardid, S. Ardid, A. Arsenic, H. Atmani, J. Aublin, F. Badaracco, L. Bailly-Salins, Z. Bardačová, B. Baret, A. Bariego-Quintana, S. Basegmez du Pree, Y. Becherini, M. Bendahman, F. Benfenati, M. Benhassi, D. M. Benoit, E. Berbee, V. Bertin, S. Biagi, M. Boettcher, D. Bonanno, J. Boumaaza, M. Bouta, M. Bouwhuis, C. Bozza, R. M. Bozza, H. Brânzaş, F. Bretaudeau, M. Breuhaus, R. Bruijn, J. Brunner, R. Bruno, E. Buis, R. Buompane, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, F. Carenini, V. Carretero, T. Cartraud, P. Castaldi, V. Cecchini, S. Celli, L. Cerisy, M. Chabab, M. Chadolias, A. Chen, S. Cherubini, T. Chiarusi, M. Circella, R. Cocimano, J. A. B. Coelho, A. Coleiro, A. Condorelli, R. Coniglione, P. Coyle, A. Creusot, G. Cuttone, R. Dallier, Y. Darras, A. De Benedittis, B. De Martino, V. Decoene, R. Del Burgo, I. Del Rosso, L. S. Di Mauro, I. Di Palma, A. F. Díaz, C. Diaz, D. Diego-Tortosa, C. Distefano, A. Domi, C. Donzaud, D. Dornic, M. Dörr, E. Drakopoulou, D. Drouhin, J.-G. Ducoin, R. Dvornický, T. Eberl, E. Eckerová, A. Eddymaoui, T. van Eeden, M. Eff, D. van Eijk, I. El Bojaddaini, S. El Hedri, A. Enzenhöfer, G. Ferrara, M. D. Filipović, F. Filippini, D. Franciotti, L. A. Fusco, S. Gagliardini, T. Gal, J. García Méndez, A. Garcia Soto, C. Gatius Oliver, N. Geißelbrecht, H. Ghaddari, L. Gialanella, B. K. Gibson, E. Giorgio, I. Goos, P. Goswami, S. R. Gozzini, R. Gracia, K. Graf, C. Guidi, B. Guillon, M. Gutiérrez, C. Haack, H. van Haren, A. Heijboer, A. Hekalo, L. Hennig, J. J. Hernández-Rey, W. Idrissi Ibnsalih, G. Illuminati, D. Joly, M. de Jong, P. de Jong, B. J. Jung, P. Kalaczyński, O. Kalekin, U. F. Katz, A. Khatun, G. Kistauri, C. Kopper, A. Kouchner, V. Kueviakoe, V. Kulikovskiy, R. Kvatadze, M. Labalme, R. Lahmann, G. Larosa, C. Lastoria, A. Lazo, S. Le Stum, G. Lehaut, E. Leonora, N. Lessing, G. Levi, F. Longhitano, F. Magnani, J. Majumdar, L. Malerba, F. Mamedov, J. Mańczak, A. Manfreda, M. Marconi, A. Margiotta, A. Marinelli, C. Markou, L. Martin, F. Marzaioli, M. Mastrodicasa, S. Mastroianni, S. Miccichè, G. Miele, P. Migliozzi, E. Migneco, M. L. Mitsou, C. M. Mollo, L. Morales-Gallegos, G. Moretti, A. Moussa, I. Mozun Mateo, R. Muller, M. R. Musone, M. Musumeci, S. Navas, A. Nayerhoda, C. A. Nicolau, B. Nkosi, B. Ó. Fearraigh, V. Oliviero, A. Orlando, E. Oukacha, D. Paesani, J. Palacios González, G. Papalashvili, V. Parisi, E. J. Pastor Gomez, A. M. Păun, G. E. Păvălaş, I. Pelegris, S. Peña Martínez, M. Perrin-Terrin, J. Perronnel, V. Pestel, R. Pestes, P. Piattelli, C. Poirè, V. Popa, T. Pradier, J. Prado, S. Pulvirenti, C. A. Quiroz-Rangel, U. Rahaman, N. Randazzo, S. Razzaque, I. C. Rea, D. Real, G. Riccobene, J. Robinson, A. Romanov, A. Šaina, F. Salesa Greus, D. F. E. Samtleben, A. Sánchez Losa, S. Sanfilippo, M. Sanguineti, C. Santonastaso, D. Santonocito, P. Sapienza, J. Schnabel, J. Schumann, H. M. Schutte, J. Seneca, N. Sennan, B. Setter, I. Sgura, R. Shanidze, A. Sharma, Y. Shitov, F. Šimkovic, A. Simonelli, A. Sinopoulou, M. V. Smirnov, B. Spisso, M. Spurio, D. Stavropoulos, I. Štekl, M. Taiuti, Y. Tayalati, H. Thiersen, I. Tosta e Melo, E. Tragia, B. Trocmé, V. Tsourapis, A. Tudorache, E. Tzamariudaki, A. Vacheret, A. Valer Melchor, V. Valsecchi, V. Van Elewyck, G. Vannoye, G. Vasileiadis, F. Vazquez de Sola, A. Veutro, S. Viola, D. Vivolo, J. Wilms, E. de Wolf, H. Yepes-Ramirez, I. Yvon, G. Zarpapis, S. Zavatarelli, A. Zegarelli, D. Zito, J. D. Zornoza, J. Zúñiga & N. ZywuckaPostprint (published version
Prospects for combined analyses of hadronic emission from -ray sources in the Milky Way with CTA and KM3NeT
The Cherenkov Telescope Array and the KM3NeT neutrino telescopes are major
upcoming facilities in the fields of -ray and neutrino astronomy,
respectively. Possible simultaneous production of rays and neutrinos
in astrophysical accelerators of cosmic-ray nuclei motivates a combination of
their data. We assess the potential of a combined analysis of CTA and KM3NeT
data to determine the contribution of hadronic emission processes in known
Galactic -ray emitters, comparing this result to the cases of two
separate analyses. In doing so, we demonstrate the capability of Gammapy, an
open-source software package for the analysis of -ray data, to also
process data from neutrino telescopes. For a selection of prototypical
-ray sources within our Galaxy, we obtain models for primary proton and
electron spectra in the hadronic and leptonic emission scenario, respectively,
by fitting published -ray spectra. Using these models and instrument
response functions for both detectors, we employ the Gammapy package to
generate pseudo data sets, where we assume 200 hours of CTA observations and 10
years of KM3NeT detector operation. We then apply a three-dimensional binned
likelihood analysis to these data sets, separately for each instrument and
jointly for both. We find that the largest benefit of the combined analysis
lies in the possibility of a consistent modelling of the -ray and
neutrino emission. Assuming a purely leptonic scenario as input, we obtain, for
the most favourable source, an average expected 68% credible interval that
constrains the contribution of hadronic processes to the observed -ray
emission to below 15%.Comment: 18 pages, 15 figures. Submitted to journa
Search for Neutrino Emission from GRB 221009A using the KM3NeT ARCA and ORCA detectors
Gamma-ray bursts are promising candidate sources of high-energy astrophysical
neutrinos. The recent GRB 221009A event, identified as the brightest gamma-ray
burst ever detected, provides a unique opportunity to investigate hadronic
emissions involving neutrinos. The KM3NeT undersea neutrino detectors
participated in the worldwide follow-up effort triggered by the event,
searching for neutrino events. In this letter, we summarize subsequent
searches, in a wide energy range from MeV up to a few PeVs. No neutrino events
are found in any of the searches performed. Upper limits on the neutrino
emission associated with GRB 221009A are computed.Comment: 11 pages, 2 PDF figures. Submitted to JCA
Embedded Software of the KM3NeT Central Logic Board
The KM3NeT Collaboration is building and operating two deep sea neutrino
telescopes at the bottom of the Mediterranean Sea. The telescopes consist of
latices of photomultiplier tubes housed in pressure-resistant glass spheres,
called digital optical modules and arranged in vertical detection units. The
two main scientific goals are the determination of the neutrino mass ordering
and the discovery and observation of high-energy neutrino sources in the
Universe. Neutrinos are detected via the Cherenkov light, which is induced by
charged particles originated in neutrino interactions. The photomultiplier
tubes convert the Cherenkov light into electrical signals that are acquired and
timestamped by the acquisition electronics. Each optical module houses the
acquisition electronics for collecting and timestamping the photomultiplier
signals with one nanosecond accuracy. Once finished, the two telescopes will
have installed more than six thousand optical acquisition nodes, completing one
of the more complex networks in the world in terms of operation and
synchronization. The embedded software running in the acquisition nodes has
been designed to provide a framework that will operate with different hardware
versions and functionalities. The hardware will not be accessible once in
operation, which complicates the embedded software architecture. The embedded
software provides a set of tools to facilitate remote manageability of the
deployed hardware, including safe reconfiguration of the firmware. This paper
presents the architecture and the techniques, methods and implementation of the
embedded software running in the acquisition nodes of the KM3NeT neutrino
telescopes
The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production
The KM3NeT Collaboration is building an underwater neutrino observatory at
the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both
composed of a three-dimensional array of light detectors, known as digital
optical modules. Each digital optical module contains a set of 31 three inch
photomultiplier tubes distributed over the surface of a 0.44 m diameter
pressure-resistant glass sphere. The module includes also calibration
instruments and electronics for power, readout and data acquisition. The power
board was developed to supply power to all the elements of the digital optical
module. The design of the power board began in 2013, and several prototypes
were produced and tested. After an exhaustive validation process in various
laboratories within the KM3NeT Collaboration, a mass production batch began,
resulting in the construction of over 1200 power boards so far. These boards
were integrated in the digital optical modules that have already been produced
and deployed, 828 until October 2023. In 2017, an upgrade of the power board,
to increase reliability and efficiency, was initiated. After the validation of
a pre-production series, a production batch of 800 upgraded boards is currently
underway. This paper describes the design, architecture, upgrade, validation,
and production of the power board, including the reliability studies and tests
conducted to ensure the safe operation at the bottom of the Mediterranean Sea
throughout the observatory's lifespa
Good Health and Well-Being
Referring to the definition of sustainable tourism and taking into consideration the specifics of medical tourism, it can be assumed that sustainable medical tourism is a conscious and sustainable human activity, in which a medical tourist/mobile patient aims to obtain broadly understood healthcare outside their permanent place of residence (at home or abroad), consisting mainly in maintaining (obtaining better) health, and/or aesthetic appearance of one’s own body, often combined with rest and consumption of tourist packages. This balance should address all three aspects – social, economic, and environmental. Therefore, the provision of sustainable medical tourism services, most often by commercial healthcare entities, should be carried out with rational spatial distribution resulting in the strengthening of local economies and improving the quality of life of the society while respecting natural resources and using innovative solutions in the medical tourism business.11-15.Encyclopedia of the UN Sustainable Development Goals, ISSN : 2523-741
Measuring the efficiency of medical tourism industry in EU member states
Purpose: Under the Directive 2011/24/EU, medical tourism and cross-border health are interrelated terms regarding the freedom to move to get the most accessible medical treatment into EU Member State within the defined procedures for reimbursement. Little known empirically regarding the efficiency of the cross-border health/medical tourism industry. This study aims to measure its efficiency in Europe for the years 2010-2014, by using Data Envelopment Analysis (DEA). Design/methodology/approach: Data obtained from OECD and the European Core Health Indicators (ECHI), which is collecting the data through Eurostat. Eurostat collects data on health-care activities and provides data on hospital discharges, including the hospital discharges of non-residents and these include hospital discharges of in-patients and day care patients. The analysis uses “DEA.P, 2.1 for windows” by Coelli (1996). Findings: The results show that the Members States health systems were very efficient in handling non-residents in-patients; however, when managing day cases/outpatients, the efficiency scores dropped. Practical implications: The findings would have significant associations affecting intentions to revisit clinics and the destination country. In addition, will be useful to those seeking a better understanding of the cross-border health and medical tourism industry efficiency. Originality/value: Extending the findings of the European Commission report (2015c) by examining how well medical tourists are informed about the decision they are making, would be of perceived value. These are important indicators at European level by helping each Member State to measure its medical tourism services. © 2019, Lorena Androutsou and Theodore Metaxas
Health Systems that Meet the Health Needs of Refugees and Migrants
This article discusses strategies designed to assist European Union (EU) health systems respond to the urgent health needs of refugees and migrants, assessing the situation from both an EU and global perspective. The article provides an overview of the legal framework, political policies, actions taken and the funding issues facing European institutions and international organizations as they seek to strengthen their response to healthcare needs of refugees and migrants. This article argues that EU member states need to be committed to improving the health status of refugees and migrants and reinforce their capabilities to advocate for respect for their basic right to health. © 2019 SAGE Publications
PHP42 EVALUATION OF THE AFTERNOON OUTPATIENT CLINICS OPERATION AT THE UNIVERSITY HOSPITAL IN LARISA
- …
