859 research outputs found
An Ethnographic-Case Study of Beliefs, Context Factors, and Practices of Teachers Integrating Technology
This ethnographic-case study explored the beliefs, context factors, and practices of three middle school exemplary teachers that led to a technology-enriched curriculum. Findings suggest that these middle school teachers believe technology is a tool that adds value to lessons and to students learning and motivation. Due to a personal interest in technology, these teachers are self-taught and apply for grants to acquire new hardware and software. They receive support for release time to continue with ongoing professional development, which has helped to change their teaching strategies from teacher-centered to student-centered. They are not afraid to take risk using trial and error, flexible planning, project-based lessons, varying roles, varying grouping, and providing multiple activities in their classroom practices
Direct measurement of the phase coherence length in a GaAs/GaAlAs square network
The low temperature magnetoconductance of a large array of quantum
coherentloops exhibits Altshuler-Aronov-Spivak oscillations which
periodicitycorresponds to 1/2 flux quantum per loop.We show that the
measurement of the harmonics content in a square networkprovides an accurate
way to determine the electron phase coherence length in units of the
lattice length without any adjustableparameters.We use this method to determine
in a network realised from a 2Delectron gas (2DEG) in a GaAS/GaAlAs
heterojunction. The temperaturedependence follows a power law from
1.3 K to 25 mK with nosaturation, as expected for 1D diffusive electronic
motion andelectron-electron scattering as the main decoherence mechanism.Comment: Additional experimental data in version
Proximity DC squids in the long junction limit
We report the design and measurement of
Superconducting/normal/superconducting (SNS) proximity DC squids in the long
junction limit, i.e. superconducting loops interrupted by two normal metal
wires roughly a micrometer long. Thanks to the clean interface between the
metals, at low temperature a large supercurrent flows through the device. The
dc squid-like geometry leads to an almost complete periodic modulation of the
critical current through the device by a magnetic flux, with a flux periodicity
of a flux quantum h/2e through the SNS loop. In addition, we examine the entire
field dependence, notably the low and high field dependence of the maximum
switching current. In contrast with the well-known Fraunhoffer-type
oscillations typical of short wide junctions, we find a monotonous gaussian
extinction of the critical current at high field. As shown in [15], this
monotonous dependence is typical of long and narrow diffusive junctions. We
also find in some cases a puzzling reentrance at low field. In contrast, the
temperature dependence of the critical current is well described by the
proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in
the long junction limit. The switching current distributions and hysteretic IV
curves also suggest interesting dynamics of long SNS junctions with an
important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure
Recommended from our members
Intact and Degraded Component Criticality Calculations of N Reactors Spent Nuclear Fuel
The objective of this calculation is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) N Reactor Spent Nuclear Fuel codisposed in a 2-Defense High-Level Waste (2-DHLW)/2-Multi-Canister Overpack (MCO) Waste Package (WP) and emplaced in a monitored geologic repository (MGR) (see Attachment I). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for both intact and degraded mode internal configurations of the codisposal waste package. This calculation will support the analysis that will be performed to demonstrate the technical viability for disposing of U-metal (N Reactor) spent nuclear fuel in the potential MGR
Recommended from our members
TRIGA FUEL PHASE I AND II CRITICALITY CALCULATION
The purpose of this calculation is to characterize the criticality aspect of the codisposal of TRIGA (Training, Research, Isotopes, General Atomic) reactor spent nuclear fuel (SNF) with Savannah River Site (SRS) high-level waste (HLW). The TRIGA SNF is loaded into a Department of Energy (DOE) standardized SNF canister which is centrally positioned inside a five-canister defense SRS HLW waste package (WP). The objective of the calculation is to investigate the criticality issues for the WP containing the five SRS HLW and DOE SNF canisters in various stages of degradation. This calculation will support the analysis that will be performed to demonstrate the viability of the codisposal concept for the Monitored Geologic Repository (MGR)
Protein Tyrosine Phosphatase-PEST Regulates Focal Adhesion Disassembly, Migration, and Cytokinesis in Fibroblasts
In this article, we show that, in transfected COS-1 cells, protein tyrosine phosphatase (PTP)-PEST translocates to the membrane periphery following stimulation by the extracellular matrix protein fibronectin. When plated on fibronectin, PTP-PEST (−/−) fibroblasts display a strong defect in motility. 3 h after plating on fibronectin, the number and size of vinculin containing focal adhesions were greatly increased in the homozygous PTP-PEST mutant cells as compared with heterozygous cells. This phenomenon appears to be due in part to a constitutive increase in tyrosine phosphorylation of p130CAS, a known PTP-PEST substrate, paxillin, which associates with PTP-PEST in vitro, and focal adhesion kinase (FAK). Another effect of this constitutive hyperphosphorylation, consistent with the focal adhesion regulation defect, is that (−/−) cells spread faster than the control cell line when plated on fibronectin. In the PTP-PEST (−/−) cells, an increase in affinity for the SH2 domains of Src and Crk towards p130CAS was also observed. In (−/−) cells, we found a significant increase in the level of tyrosine phosphorylation of PSTPIP, a cleavage furrow–associated protein that interacts physically with all PEST family members. An effect of PSTPIP hyperphosphorylation appears to be that some cells remain attached at the site of the cleavage furrow for an extended period of time. In conclusion, our data suggest PTP-PEST plays a dual role in cell cytoskeleton organization, by promoting the turnover of focal adhesions required for cell migration, and by directly or indirectly regulating the proline, serine, threonine phosphatase interacting protein (PSTPIP) tyrosine phosphorylation level which may be involved in regulating cleavage furrow formation or disassembly during normal cell division
Recommended from our members
Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Degraded Mode
The objective of this calculation is to characterize the nuclear criticality safety concerns associated with the codisposal of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP) and placed in a Monitored Geologic Repository (MGR). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for the degraded mode internal configurations of the codisposal WP. The results of this calculation and those of Ref. 8 will be used to evaluate criticality issues and support the analysis that will be performed to demonstrate the viability of the codisposal concept for the Monitored Geologic Repository
RAPD and microsatellite transferability studies in selected species of Prosopis (section Algarobia) with emphasis on Prosopis juliflora and P. pallida
- …
