13,083 research outputs found
Quantum Hall effects of graphene with multi orbitals: Topological numbers, Boltzmann conductance and Semi-classical quantization
Hall conductance as the Chern numbers of the Berry connection
in the magnetic Brillouin zone is calculated for a realistic multi band
tight-band model of graphene with non-orthogonal basis. It is confirmed that
the envelope of coincides with a semi-classical result when
magnetic field is sufficiently small.
The Hall resistivity from the weak-field Boltzmann theory also
explains the overall behaviour of the if the Fermi surface is
composed of a single energy band. The plateaux of are explained
from semi-classical quantization and necessary modification is proposed for the
Dirac fermion regimes.Comment: 5pages, 3figure
Massive Hyper-Kahler Sigma Models and BPS Domain Walls
With the non-Abelian Hyper-Kahler quotient by U(M) and SU(M) gauge groups, we
give the massive Hyper-Kahler sigma models that are not toric in the N=1
superfield formalism. The U(M) quotient gives N!/[M! (N-M)!] (N is a number of
flavors) discrete vacua that may allow various types of domain walls, whereas
the SU(M) quotient gives no discrete vacua. We derive BPS domain wall solution
in the case of N=2 and M=1 in the U(M) quotient model.Comment: 16 pages, 1 figure, contribution to the Proceedings of the
International Conference on "Symmetry Methods in Physics (SYM-PHYS10)" held
at Yerevan, Armenia, 13-19 Aug. 200
Lithium production on a low-mass secondary in a black hole soft X-ray transient
We examine production of Li on the surface of a low-mass secondary in a black
hole soft X-ray transient (BHSXT) through the spallation of CNO nuclei by
neutrons which are ejected from a hot (> 10 MeV) advection-dominated accretion
flow (ADAF) around the black hole. Using updated binary parameters, cross
sections of neutron-induced spallation reactions, and mass accretion rates in
ADAF derived from the spectrum fitting of multi-wavelength observations of
quiescent BHSXTs, we obtain the equilibrium abundances of Li by equating the
production rate of Li and the mass transfer rate through accretion to the black
hole. The resulting abundances are found to be in good agreement with the
observed values in seven BHSXTs. We note that the abundances vary in a
timescale longer than a few months in our model. Moreover, the isotopic ratio
Li6/Li7 is calculated to be about 0.7--0.8 on the secondaries, which is much
higher than the ratio measured in meteorites. Detection of such a high value is
favorable to the production of Li via spallation and the existence of a hot
accretion flow, rather than an accretion disk corona system in quiescent BHSXT.Comment: 4 pages, 3 figures, and 2 tables, submitted to Astrophyscal Jounal
Letter
Walls in supersymmetric massive nonlinear sigma model on complex quadric surface
The Bogomol'nyi-Prasad-Sommerfield (BPS) multiwall solutions are constructed
in a massive Kahler nonlinear sigma model on the complex quadric surface,
Q^N=SO(N+2)/[SO(N)\times SO(2)] in 3-dimensional space-time. The theory has a
non-trivial scalar potential generated by the Scherk-Schwarz dimensional
reduction from the massless nonlinear sigma model on Q^N in 4-dimensional
space-time and it gives rise to 2[N/2+1] discrete vacua. The BPS wall solutions
connecting these vacua are obtained based on the moduli matrix approach. It is
also shown that the moduli space of the BPS wall solutions is the complex
quadric surface Q^N.Comment: 42 pages, 30 figures, typos corrected, version to appear in PR
Noise-Induced Synchronization and Clustering in Ensembles of Uncoupled Limit-Cycle Oscillators
We study synchronization properties of general uncoupled limit-cycle
oscillators driven by common and independent Gaussian white noises. Using phase
reduction and averaging methods, we analytically derive the stationary
distribution of the phase difference between oscillators for weak noise
intensity. We demonstrate that in addition to synchronization, clustering, or
more generally coherence, always results from arbitrary initial conditions,
irrespective of the details of the oscillators.Comment: 6 pages, 2 figure
The role of infrared divergence for decoherence
Continuous and discrete superselection rules induced by the interaction with
the environment are investigated for a class of exactly soluble Hamiltonian
models. The environment is given by a Boson field. Stable superselection
sectors emerge if and only if the low frequences dominate and the ground state
of the Boson field disappears due to infrared divergence. The models allow
uniform estimates of all transition matrix elements between different
superselection sectors.Comment: 11 pages, extended and simplified proo
Extremely strong-coupling superconductivity and anomalous lattice properties in the beta-pyrochlore oxide KOs2O6
Superconducting and normal-state properties of the beta-pyrochlore oxide
KOs2O6 are studied by means of thermodynamic and transport measurements. It is
shown that the superconductivity is of conventional s-wave type and lies in the
extremely strong-coupling regime. Specific heat and resistivity measurements
reveal that there are characteristic low-energy phonons that give rise to
unusual scattering of carriers due to strong electron-phonon interactions. The
entity of the low-energy phonons is ascribed to the heavy rattling of the K ion
confined in an oversized cage made of OsO6 octahedra. It is suggested that this
electron-rattler coupling mediates the Cooper pairing, resulting in the
extremely strong-coupling superconductivity.Comment: 17 pages (only 4 pages included here. go to
http://hiroi.issp.u-tokyo.ac.jp/Published%20papers/K-SC6.pdf for full pages),
to be published in PR
Preface Results of the open session on "Documentation and monitoring of landslides and debris flows" for mathematical modelling and design of mitigation measures, held at the EGU General Assembly 2009
The papers that are here presented and summarised represent the recent scientific contributions of some authors coming from different countries and working in the fields of monitoring, modelling, mapping and design of mitigation measures against mass movements. The authors had the opportunity to present their recent advancements, discuss each other needs and set forth future research requirements during the 2009 EGU General Assembly, so that their scientific contributions can be considered the result of the debates and exchanges that were set among scientists and researchers, either personally or during the review phase since that date. In this resume, the scientific papers of the special issue are divided according to different thematic areas and summarised. The most innovative scientific approaches proposed in the special issue, regarding the monitoring methodologies, simulation techniques and laboratory equipment are described and summarised. The obtained results are very promising to keep on future research at a very satisfactory level
Relating harmonic and projective descriptions of N=2 nonlinear sigma models
Recent papers have established the relationship between projective superspace
and a complexified version of harmonic superspace. We extend this construction
to the case of general nonlinear sigma models in both frameworks. Using an
analogy with Hamiltonian mechanics, we demonstrate how the Hamiltonian
structure of the harmonic action and the symplectic structure of the projective
action naturally arise from a single unifying action on a complexified version
of harmonic superspace. This links the harmonic and projective descriptions of
hyperkahler target spaces. For the two examples of Taub-NUT and Eguchi-Hanson,
we show how to derive the projective superspace solutions from the harmonic
superspace solutions.Comment: 25 pages; v3: typo fixed in eq (1.36
- …
