404 research outputs found
Grating integrated single mode microring laser
Microring and microdisk lasers are potential candidates for small footprint, low threshold in-plane integrated lasers; however, they exhibit multimode lasing spectra and bistability. Here, we theoretically propose and experimentally demonstrate a novel approach for achieving single mode lasing in microring lasers. Our approach is based on increasing the radiation loss of all but one of the resonant modes of microring resonators by integrating second order gratings on the microrings’ waveguide. We present single mode operation of electrically pumped semiconductor microring lasers whose lasing modes are lithographically selected via the second order grating. We also show that adding the grating does not increase the lasing threshold current significantly
Demonstration of the first monolithically integrated self-rolled-up tube based vertical photonic coupler
We demonstrated the first monolithically integrated self-rolled-up SiN_x tube based
vertical photonic coupler on top of a planar ridge waveguide. The coupling efficiency between the
elements is >10 times higher than similar non-integrated device
Fracture in Three-Dimensional Fuse Networks
We report on large scale numerical simulations of fracture surfaces using
random fuse networks for two very different disorders. There are some
properties and exponents that are different for the two distributions, but
others, notably the roughness exponents, seem universal. For the universal
roughness exponent we found a value of zeta = 0.62 +/- 0.05. In contrast to
what is observed in two dimensions, this value is lower than that reported in
experimental studies of brittle fractures, and rules out the minimal energy
surface exponent, 0.41 +/- 0.01.Comment: 4 pages, RevTeX, 5 figures, Postscrip
Infinite-cluster geometry in central-force networks
We show that the infinite percolating cluster (with density P_inf) of
central-force networks is composed of: a fractal stress-bearing backbone (Pb)
and; rigid but unstressed ``dangling ends'' which occupy a finite
volume-fraction of the lattice (Pd). Near the rigidity threshold pc, there is
then a first-order transition in P_inf = Pd + Pb, while Pb is second-order with
exponent Beta'. A new mean field theory shows Beta'(mf)=1/2, while simulations
of triangular lattices give Beta'_tr = 0.255 +/- 0.03.Comment: 6 pages, 4 figures, uses epsfig. Accepted for publication in Physical
Review Letter
Fracture of disordered solids in compression as a critical phenomenon: I. Statistical mechanics formalism
This is the first of a series of three articles that treats fracture
localization as a critical phenomenon. This first article establishes a
statistical mechanics based on ensemble averages when fluctuations through time
play no role in defining the ensemble. Ensembles are obtained by dividing a
huge rock sample into many mesoscopic volumes. Because rocks are a disordered
collection of grains in cohesive contact, we expect that once shear strain is
applied and cracks begin to arrive in the system, the mesoscopic volumes will
have a wide distribution of different crack states. These mesoscopic volumes
are the members of our ensembles. We determine the probability of observing a
mesoscopic volume to be in a given crack state by maximizing Shannon's measure
of the emergent crack disorder subject to constraints coming from the
energy-balance of brittle fracture. The laws of thermodynamics, the partition
function, and the quantification of temperature are obtained for such cracking
systems.Comment: 11 pages, 2 figure
Stressed backbone and elasticity of random central-force systems
We use a new algorithm to find the stress-carrying backbone of ``generic''
site-diluted triangular lattices of up to 10^6 sites. Generic lattices can be
made by randomly displacing the sites of a regular lattice. The percolation
threshold is Pc=0.6975 +/- 0.0003, the correlation length exponent \nu =1.16
+/- 0.03 and the fractal dimension of the backbone Db=1.78 +/- 0.02. The number
of ``critical bonds'' (if you remove them rigidity is lost) on the backbone
scales as L^{x}, with x=0.85 +/- 0.05. The Young's modulus is also calculated.Comment: 5 pages, 5 figures, uses epsfi
Elasticity of Gaussian and nearly-Gaussian phantom networks
We study the elastic properties of phantom networks of Gaussian and
nearly-Gaussian springs. We show that the stress tensor of a Gaussian network
coincides with the conductivity tensor of an equivalent resistor network, while
its elastic constants vanish. We use a perturbation theory to analyze the
elastic behavior of networks of slightly non-Gaussian springs. We show that the
elastic constants of phantom percolation networks of nearly-Gaussian springs
have a power low dependence on the distance of the system from the percolation
threshold, and derive bounds on the exponents.Comment: submitted to Phys. Rev. E, 10 pages, 1 figur
Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask
Nanoscale localization of single molecules is a crucial function in several advanced microscopy techniques, including single-molecule tracking and wide-field super-resolution imaging. Until now, a central consideration of such techniques is how to optimize the precision of molecular localization. However, as these methods continue to push towards the nanometre size scale, an increasingly important concern is the localization accuracy. In particular, single fluorescent molecules emit with an anisotropic radiation pattern of an oscillating electric dipole, which can cause significant localization biases using common estimators. Here we present the theory and experimental demonstration of a solution to this problem based on azimuthal filtering in the Fourier plane of the microscope. We do so using a high-efficiency dielectric metasurface polarization/phase device composed of nanoposts with subwavelength spacing. The method is demonstrated both on fluorophores embedded in a polymer matrix and in dL5 protein complexes that bind malachite green
Comment on Bettignies et al. The scale-dependent behaviour of cities: a cross-cities multiscale driver analysis of urban energy use. Sustainability 2019, 11, 3246
Bettignies et al. examine power-law relationships between drivers of energy use and urban features at city and infra-city levels for ten different cities in six countries across four continents, featuring a wide distribution of urban indicators from various data sources. The authors employ univariate linear regression models using selected log-transformed indicators to investigate whether the intensity of energy use scales with urban indicators such as population size, density, and income. Bettignies et al. suggest that based on their findings, the urban energy-use drivers are in fact scale-dependent, and that their results reveal a substantial heterogeneity across and within cities. They reference this as why more consideration needs to be paid to local factors when devising urban policy. On this note, we argue that Bettignies et al. appear to have not only misunderstood the urban scaling literature they have cited, but have also employed flawed methodological design in their analysis that ultimately leaves their conclusions unsubstantiated
Spread of efflux pump overexpressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa by using an efflux pump inhibitor
Background: Fluoroquinolone resistance in Pseudomonas aeruginosa may be due to efflux pump overexpression and/or target mutations. We designed this study to investigate the efflux pump mediated fluoroquinolone resistance and check the increasing effectiveness of fluoroquinolones in combination with an efflux pumps inhibitor among P. aeruginosa isolates from burn wounds infections. Materials and Methods: A total of 154 consecutive strains of P. aeruginosa were recovered from separate patients hospitalized in a burn hospital, Tehran, Iran. The isolates first were studied by disk diffusion antibiogram for 11 antibiotics and then minimum inhibitory concentration (MIC) experiments were performed to detect synergy between ciprofloxacin and the efflux pump inhibitor, carbonyl cyanide-m-chlorophenyl hydrazone (CCCP). Then to elucidate the inducing of multi drug resistance due to different efflux pumps activation in Fluoroquinolone resistant isolates, synergy experiments were also performed in random ciprofloxacin resistant isolates which have overexpressed efflux pumps phenotypically, using CCCP and selected antibiotics as markers for Beta-lactams and Aminoglycosides. The isolates were also tested by polymerase chain reaction (PCR) for the presence of the MexA, MexC and MexE, which encode the efflux pumps MexAB-OprM, MexCD-OprJ and MexEF-OprN. Results: Most of the isolates were resistant to 3 or more antibiotics tested. More than half of the ciprofloxacin resistant isolates exhibited synergy between ciprofloxacin and CCCP, indicating the efflux pump activity contributed to the ciprofloxacin resistance. Also increased susceptibility of random ciprofloxacin resistant isolates of P. aeruginosa to other selected antibiotics, in presence of CCCP, implied multidrug extrusion by different active efflux pump in fluoroquinolones resistant strains. All of Ciprofloxacin resistant isolates were positive for MexA, MexC and MexE genes simultaneously. Conclusion: In this burn hospital, where multidrug resistant P. aeruginosa isolates were prevalent, ciprofloxacin resistance and multidrug resistance due to the overexpression of fluoroquinolones mediated efflux pumps has also now emerged. Early recognition of this resistance mechanism should allow the use of alternative antibiotics and use an efflux pumps inhibitor in combination with antibiotic therapy. © 2015 by The Korean Society of Infectious Diseases
- …
