6,737 research outputs found
Phase behavior of a fluid with competing attractive and repulsive interactions
Fluids in which the interparticle potential has a hard core, is attractive at
moderate separations, and repulsive at greater separations are known to exhibit
novel phase behavior, including stable inhomogeneous phases. Here we report a
joint simulation and theoretical study of such a fluid, focusing on the
relationship between the liquid-vapor transition line and any new phases. The
phase diagram is studied as a function of the amplitude of the attraction for a
certain fixed amplitude of the long ranged repulsion. We find that the effect
of the repulsion is to substitute the liquid-vapor critical point and a portion
of the associated liquid-vapor transition line, by two first order transitions.
One of these transitions separates the vapor from a fluid of spherical
liquidlike clusters; the other separates the liquid from a fluid of spherical
voids. At low temperature, the two transition lines intersect one another and a
vapor-liquid transition line at a triple point. While most integral equation
theories are unable to describe the new phase transitions, the Percus Yevick
approximation does succeed in capturing the vapor-cluster transition, as well
as aspects of the structure of the cluster fluid, in reasonable agreement with
the simulation results.Comment: 15 pages, 20 figure
An evaluation of Skylab (EREP) remote sensing techniques applied to investigations of crustal structure
The author has identified the following significant results. Film positives (70mm) from all six S190A multispectral photographic camera stations for any one scene can be registered and analyzed in a color additive viewer. Using a multispectral viewer, S190A and B films can be projected directly onto published geologic and topographic maps at scales as large as 1:62,500 and 1:24,000 without significant loss of detail. S190A films and prints permit the detection of faults, fractures, and other linear features not visible in any other space imagery. S192 MSS imagery can be useful for rock-type discrimination studies and delineation of linear patterns and arcuate anomalies. Anomalous color reflectances and arcuate color patterns revealed mineralized zones, copper deposits, vegetation, and volcanic rocks in various locations such as Panamint Range (CA), Greenwater (Death Valley), Lava Mountains (CA), northwestern Arizona, and Coso Hot Springs (CA)
X-Ray Diffraction and Reflectance Spectroscopy of Murchison Powders (CM2) After Thermal Analysis Under Reducing Conditions to Final Temperatures Between 300 and 1300c
The asteroids Ryugu and Bennu have spectral characteristics in common with CI/CM type carbonaceous chondrites and are target bodies for JAXAs Hayabusa2 and NASAs OSIRIS-Rex missions, respectively. Analog studies, based primarily on the Murchison CM2 chondrite, provide a pathway to separate spectral properties resulting space weathering from those inherent to parent-body, mineralogy, chemistry, and processes. Ryugu shares spectral properties with thermally metamorphosed and partly dehydrated CI/CM chondrites. We have undertaken a multidisciplinary study of the thermal decomposition of Murchison powder samples as an analog to metamorphic process that may have occurred on Ryugu. Bulk analyses include thermal And evolved gas analysis, X-ray diffraction (XRD), and VIS-NIR and Mssbauer spectroscopy; micro- to nanoscale analyses included scanning and transmission electron microscopy and electron probe micro analysisWe report here XRD and VIS-NIR analyses of pre- and post-heated Murchison powders, and in a companion paper report results from multiple electron beam techniques
Budget Feasible Mechanisms for Experimental Design
In the classical experimental design setting, an experimenter E has access to
a population of potential experiment subjects , each
associated with a vector of features . Conducting an experiment
with subject reveals an unknown value to E. E typically assumes
some hypothetical relationship between 's and 's, e.g., , and estimates from experiments, e.g., through linear
regression. As a proxy for various practical constraints, E may select only a
subset of subjects on which to conduct the experiment.
We initiate the study of budgeted mechanisms for experimental design. In this
setting, E has a budget . Each subject declares an associated cost to be part of the experiment, and must be paid at least her cost. In
particular, the Experimental Design Problem (EDP) is to find a set of
subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in
S}x_i\T{x_i}) under the constraint ; our objective
function corresponds to the information gain in parameter that is
learned through linear regression methods, and is related to the so-called
-optimality criterion. Further, the subjects are strategic and may lie about
their costs.
We present a deterministic, polynomial time, budget feasible mechanism
scheme, that is approximately truthful and yields a constant factor
approximation to EDP. In particular, for any small and , we can construct a (12.98, )-approximate mechanism that is
-truthful and runs in polynomial time in both and
. We also establish that no truthful,
budget-feasible algorithms is possible within a factor 2 approximation, and
show how to generalize our approach to a wide class of learning problems,
beyond linear regression
Bipolar membranes with fluid distribution passages
The present invention provides a bipolar membrane and methods for making and using the membrane. The bipolar membrane comprises a cation-selective region, an anion-selective region, an interfacial region between the anion-selective region and the cation-selective region, and means for delivering fluid directly into the interfacial region. The means for delivering fluid includes passages that may comprise a fluid-permeable material, a wicking material, an open passage disposed within the membrane or some combination thereof. The passages may be provided in many shapes, sizes and configurations, but preferably deliver fluid directly to the interfacial region so that the rate of electrodialysis is no longer limited by the diffusion of fluid through the cation- or anion-selective regions to the interfacial region
Higher education, mature students and employment goals: policies and practices in the UK
This article considers recent policies of Higher Education in the UK, which are aimed at widening participation and meeting the needs of employers. The focus is on the growing population of part-time students, and the implications of policies for this group. The article takes a critical perspective on government policies, using data from a major study of mature part-time students, conducted in two specialist institutions in the UK, a London University college and a distance learning university. Findings from this study throw doubt on the feasibility of determining a priori what kind of study pathway is most conducive for the individual in terms of employment gains and opportunities for upward social mobility. In conclusion, doubts are raised as to whether policies such as those of the present UK government are likely to achieve its aims. Such policies are not unique to the UK, and lessons from this country are relevant to most of the developed world
Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals
Magnetic doping of semiconductor nanostructures is actively pursued for
applications in magnetic memory and spin-based electronics. Central to these
efforts is a drive to control the interaction strength between carriers
(electrons and holes) and the embedded magnetic atoms. In this respect,
colloidal nanocrystal heterostructures provide great flexibility via
growth-controlled `engineering' of electron and hole wavefunctions within
individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d
exchange interaction between electron-hole excitations (excitons) and
paramagnetic manganese ions using `inverted' core-shell nanocrystals composed
of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe.
Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the
band-edge exciton that, surprisingly, are tunable in both magnitude and sign.
Effective exciton g-factors are controllably tuned from -200 to +30 solely by
increasing the CdSe shell thickness, demonstrating that strong quantum
confinement and wavefunction engineering in heterostructured nanocrystal
materials can be utilized to manipulate carrier-Mn wavefunction overlap and the
sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf
Mode-coupling theory and the fluctuation-dissipation theorem for nonlinear Langevin equations with multiplicative noise
In this letter, we develop a mode-coupling theory for a class of nonlinear
Langevin equations with multiplicative noise using a field theoretic formalism.
These equations are simplified models of realistic colloidal suspensions. We
prove that the derived equations are consistent with the
fluctuation-dissipation theorem. We also discuss the generalization of the
result given here to real fluids, and the possible description of supercooled
fluids in the aging regime. We demonstrate that the standard idealized
mode-coupling theory is not consistent with the FDT in a strict field theoretic
sense.Comment: 14 pages, to appear in J. Phys.
Displaced but not replaced: the impact of e-learning on academic identities in higher education.
Challenges facing universities are leading many to implement institutional strategies to incorporate e-learning rather than leaving its adoption up to enthusiastic individuals. Although there is growing understanding about the impact of e-learning on the student experience, there is less understanding of academics’ perceptions of e-learning and its impact on their identities. This paper explores the changing nature of academic identities revealed through case study research into the implementation of e-learning at one UK university. By providing insight into the lived experiences of academics in a university in which technology is not only transforming access to knowledge but also influencing the balance of power between academic and student in knowledge production and use, it is suggested that academics may experience a jolt to their ‘trajectory of self’ when engaging with e-learning. The potential for e-learning to prompt loss of teacher presence and displacement as knowledge expert may appear to undermine the ontological security of their academic identity
- …
