1,243 research outputs found
Exploring the acceptability of two self-sampling devices for human papillomavirus testing in the cervical screening context: a qualitative study of Muslim women in London
Objectives We explored Muslim women's attitudes to self-sampling for human papillomavirus (HPV) in the context of cervical cancer screening and their responses to two self-sampling devices.Setting A Muslim community centre in north-east London.Methods Following a talk given on the subject of cervical cancer and HPV at the community centre, 28 women were recruited to take part in three focus group discussions. The discussion covered cervical screening, self-sampling and HPV testing. Women were also asked for their responses to a swab self-sampling kit and a cervico-vaginal lavage device. Discussions were recorded and transcribed verbatim and the qualitative data were analysed using Framework Analysis.Results Participants were generally positive about cervical screening but acknowledged that some women in their community were reluctant to offend because of embarrassment, language difficulties, fear or because they were unmarried and did not want to communicate implicit messages about being sexually active. Self-sampling met a mixed response - women were concerned about not doing the test correctly, but thought that it might overcome barriers to screening for some women. HPV testing itself was thought to raise potentially difficult issues relating to trust and fidelity within marriages. Although most women said they would prefer to continue to have screening by a health professional, if they were to perform self-sampling, there was overwhelming preference for the swab over the lavage kit.Conclusions There was limited enthusiasm for self-sampling in this group of Muslim women who had mostly attended for cervical screening, but a clear preference for a swab rather than a cervico-vaginal lavage
A deconvolution map-making method for experiments with circular scanning strategies
Aims. To investigate the performance of a deconvolution map-making algorithm
for an experiment with a circular scanning strategy, specifically in this case
for the analysis of Planck data, and to quantify the effects of making maps
using simplified approximations to the true beams. Methods. We present an
implementation of a map-making algorithm which allows the combined treatment of
temperature and polarisation data, and removal of instrumental effects, such as
detector time constants and finite sampling intervals, as well as the
deconvolution of arbitrarily complex beams from the maps. This method may be
applied to any experiment with a circular scanning-strategy. Results.
Low-resolution experiments were used to demonstrate the ability of this method
to remove the effects of arbitrary beams from the maps and to demonstrate the
effects on the maps of ignoring beam asymmetries. Additionally, results are
presented of an analysis of a realistic full-scale simulated data-set for the
Planck LFI 30 GHz channel. Conclusions. Our method successfully removes the
effects of the beams from the maps, and although it is computationally
expensive, the analysis of the Planck LFI data should be feasible with this
approach.Comment: 14 pages, 14 figures, accepte
IgE induces proliferation in human airway smooth muscle cells: role of MAPK and STAT3 pathways
Airway remodeling is not specifically targeted by current asthma medications, partly owing to the lack of understanding of remodeling mechanisms, altogether posing great challenges in asthma treatment. Increased airway smooth muscle (ASM) mass due to hyperplasia/hypertrophy contributes significantly to overall airway remodeling and correlates with decline in lung function. Recent evidence suggests that IgE sensitization can enhance the survival and mediator release in inflammatory cells. Human ASM (HASM) cells express both low affinity (FcεRII/CD23) and high affinity IgE Fc receptors (FcεRI), and IgE can modulate the contractile and synthetic function of HASM cells. IgE was recently shown to induce HASM cell proliferation but the detailed mechanisms remain unknown. We report here that IgE sensitization induces HASM cell proliferation, as measured by 3H-thymidine, EdU incorporation, and manual cell counting. As an upstream signature component of FcεRI signaling, inhibition of spleen tyrosine kinase (Syk) abrogated the IgE-induced HASM proliferation. Further analysis of IgE-induced signaling depicted an IgE-mediated activation of Erk 1/2, p38, JNK MAPK, and Akt kinases. Lastly, lentiviral-shRNA-mediated STAT3 silencing completely abolished the IgE-mediated HASM cell proliferation. Collectively, our data provide mechanisms of a novel function of IgE which may contribute, at least in part, to airway remodeling observed in allergic asthma by directly inducing HASM cell proliferation
SANEPIC: A Map-Making Method for Timestream Data From Large Arrays
We describe a map-making method which we have developed for the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST) experiment, but which should
have general application to data from other submillimeter arrays. Our method
uses a Maximum Likelihood based approach, with several approximations, which
allows images to be constructed using large amounts of data with fairly modest
computer memory and processing requirements. This new approach, Signal And
Noise Estimation Procedure Including Correlations (SANEPIC), builds upon
several previous methods, but focuses specifically on the regime where there is
a large number of detectors sampling the same map of the sky, and explicitly
allowing for the the possibility of strong correlations between the detector
timestreams. We provide real and simulated examples of how well this method
performs compared with more simplistic map-makers based on filtering. We
discuss two separate implementations of SANEPIC: a brute-force approach, in
which the inverse pixel-pixel covariance matrix is computed; and an iterative
approach, which is much more efficient for large maps. SANEPIC has been
successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related
results available at http://blastexperiment.info/ [the BLAST Webpage
Quadratic Lagrangians and Topology in Gauge Theory Gravity
We consider topological contributions to the action integral in a gauge
theory formulation of gravity. Two topological invariants are found and are
shown to arise from the scalar and pseudoscalar parts of a single integral.
Neither of these action integrals contribute to the classical field equations.
An identity is found for the invariants that is valid for non-symmetric Riemann
tensors, generalizing the usual GR expression for the topological invariants.
The link with Yang-Mills instantons in Euclidean gravity is also explored. Ten
independent quadratic terms are constructed from the Riemann tensor, and the
topological invariants reduce these to eight possible independent terms for a
quadratic Lagrangian. The resulting field equations for the parity
non-violating terms are presented. Our derivations of these results are
considerably simpler that those found in the literature
Detection of X-ray galaxy clusters based on the Kolmogorov method
The detection of clusters of galaxies in large surveys plays an important
part in extragalactic astronomy, and particularly in cosmology, since cluster
counts can give strong constraints on cosmological parameters. X-ray imaging is
in particular a reliable means to discover new clusters, and large X-ray
surveys are now available. Considering XMM-Newton data for a sample of 40 Abell
clusters, we show that their analysis with a Kolmogorov distribution can
provide a distinctive signature for galaxy clusters. The Kolmogorov method is
sensitive to the correlations in the cluster X-ray properties and can therefore
be used for their identification, thus allowing to search reliably for clusters
in a simple way
Novel Barriers to Prevent Dogwood Borer (Lepidoptera: Sesiidae) and Rodent Damage in Apple Plantings
We evaluated a combination of noninsecticidal alternatives to control trunk-damaging dogwood borer, Synanthedon scitula (Harris), consisting of novel barrier technologies, used alone or in combination with mating disruption. Barrier formulations evaluated included fibrous barriers of nonwoven ethylene vinyl acetate (EVA) and nonfibrous barriers of rubberized paint (elastomer) used in building coatings. To examine efficacy of dogwood borer control in orchards, all barrier trials were replicated in field tests, both in combination with mating disruption and without it. Trunk inspections to determine whether mating disruption and barriers effectively reduced actual tree infestation showed pheromone disruption significantly reduced infestation compared with the untreated check, but was not as effective as trunk handgun sprays of chlorpyrifos. EVA trunk barriers were effective in preventing borer infestation compared with untreated trees. The elastomer did not differ from the check or the EVA treatment. There was no interaction between disruption and barrier treatments. Barrier field life and durability was assessed over 2 yr by comparing degradation over time due to weathering and other environmental effects including animal damage. The EVA persisted and remained more intact than the elastomer, but was in need of reapplication after 2 yr. Barriers were also screened for efficacy against voles in small-plot trials in nonorchard locations with known high vole pressure; they were tested either alone, combined with a repellent (thiram), or, in the case of the elastomer only, combined with an abrasive (sand). Only the EVA significantly lowered vole chewing damage relative to the untreated check
Effect of Fourier filters in removing periodic systematic effects from CMB data
We consider the application of high-pass Fourier filters to remove periodic
systematic fluctuations from full-sky survey CMB datasets. We compare the
filter performance with destriping codes commonly used to remove the effect of
residual 1/f noise from timelines. As a realistic working case, we use
simulations of the typical Planck scanning strategy and Planck Low Frequency
Instrument noise performance, with spurious periodic fluctuations that mimic a
typical thermal disturbance. We show that the application of Fourier high-pass
filters in chunks always requires subsequent normalisation of induced offsets
by means of destriping. For a complex signal containing all the astrophysical
and instrumental components, the result obtained by applying filter and
destriping in series is comparable to the result obtained by destriping only,
which makes the usefulness of Fourier filters questionable for removing this
kind of effects.Comment: 10 pages, 8 figures, published in Astronomy & Astrophysic
The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths
We present the Planck Sky Model (PSM), a parametric model for the generation
of all-sky, few arcminute resolution maps of sky emission at submillimetre to
centimetre wavelengths, in both intensity and polarisation. Several options are
implemented to model the cosmic microwave background, Galactic diffuse emission
(synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II
regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic
Sunyaev-Zeldovich signals from clusters of galaxies. Each component is
simulated by means of educated interpolations/extrapolations of data sets
available at the time of the launch of the Planck mission, complemented by
state-of-the-art models of the emission. Distinctive features of the
simulations are: spatially varying spectral properties of synchrotron and dust;
different spectral parameters for each point source; modeling of the clustering
properties of extragalactic sources and of the power spectrum of fluctuations
in the cosmic infrared background. The PSM enables the production of random
realizations of the sky emission, constrained to match observational data
within their uncertainties, and is implemented in a software package that is
regularly updated with incoming information from observations. The model is
expected to serve as a useful tool for optimizing planned microwave and
sub-millimetre surveys and to test data processing and analysis pipelines. It
is, in particular, used for the development and validation of data analysis
pipelines within the planck collaboration. A version of the software that can
be used for simulating the observations for a variety of experiments is made
available on a dedicated website.Comment: 35 pages, 31 figure
- …
