441 research outputs found
Asymptotic Behavior of the Correlator for Polyakov Loops
The asymptotic behavior of the correlator for Polyakov loop operators
separated by a large distance is determined for high temperature QCD. It is
dominated by nonperturbative effects related to the exchange of magnetostatic
gluons. To analyze the asymptotic behavior, the problem is formulated in terms
of the effective field theory of QCD in 3 space dimensions. The Polyakov loop
operator is expanded in terms of local gauge-invariant operators constructed
out of the magnetostatic gauge field, with coefficients that can be calculated
using resummed perturbation theory. The asymptotic behavior of the correlator
is , where is the mass of the lowest-lying glueball in
-dimensional QCD. This result implies that existing lattice calculations
of the Polyakov loop correlator at the highest temperatures available do not
probe the true asymptotic region in .Comment: 10 pages, NUHEP-TH-94-2
Quarkonium Suppression
I discuss quarkonium suppression in equilibriated strongly interacting
matter. After a brief review of basic features of quarkonium production I
discuss the application of recent lattice data on the heavy quark potential to
the problem of quarkonium dissociation as well as the problem of direct lattice
determination of quarkonium properties in finite temperature lattice QCD.Comment: Invited plenary talk presented on 4th International Conference on
Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP-2001), November
26-30, 2001, Jaipur; 12 pp, LaTeX, uses pramana.st
Thermodynamics of lattice QCD with two light quark flavours on a 16^3 x 8 lattice II
We have extended our earlier simulations of the high temperature behaviour of
lattice QCD with two light flavours of staggered quarks on a
lattice to lower quark mass (m_q=0.00625). The transition from hadronic matter
to a quark-gluon plasma is observed at corresponding to a
temperature of MeV. We present measurements of observables
which probe the nature of the quark-gluon plasma and serve to distinguish it
from hadronic matter. Although the transition is quite abrupt, we have seen no
indications that it is first order.Comment: 23 pages, RevteX, 6 encapsulated postscript figure
Linking the chiral and deconfinement phase transitions
We show that the electric glueball becomes critical at the end-point of the
deconfinement phase transition in finite temperature QCD. Based on this
observation and existing lattice data, we argue that the chiral phase
transition at a zero quark mass and the deconfinement phase transition at an
infinite quark mass are continuously connected by the glueball-sigma mixing.Comment: 4 pages, terminology corrected. To appear in Phys. Rev.
Relation between the Polyakov loop and the chiral order parameter at strong coupling
We discuss the relation between the Polyakov loop and the chiral order
parameter at finite temperature by using the Gocksch-Ogilvie model with
fundamental or adjoint quarks. The model is based on the double expansion of
strong coupling and large dimensionality on the lattice. In an analytic way
with the mean field approximation employed, we show that the confined phase
must be accompanied by the spontaneous breaking of the chiral symmetry for both
fundamental and adjoint quarks. Then we proceed to numerical analysis to look
into the coupled dynamics of the Polyakov loop and the chiral order parameter.
In the case of fundamental quarks, the pseudo-critical temperature inferred
from the Polyakov loop behavior turns out to coincide with the pseudo-critical
temperature of the chiral phase transition. We discuss the physical implication
of the coincidence of the pseudo-critical temperatures in two extreme cases;
one is the deconfinement dominance and the other is the chiral dominance. As
for adjoint quarks, the deconfinement transition of first order persists and
the chiral phase transition occurs distinctly at higher temperature than the
deconfinement transition does. The present model study gives us a plausible
picture to understand the results from the lattice QCD and aQCD simulations.Comment: 19 pages, 9 figures, to appear in Phys.Rev.D. Appendix A is modified;
references are adde
Heavy Quark Potentials in Quenched QCD at High Temperature
Heavy quark potentials are investigated at high temperatures. The temperature
range covered by the analysis extends from values just below the
deconfinement temperature up to about in the deconfined phase. We
simulated the pure gauge sector of QCD on lattices with temporal extents of 4,
6 and 8 with spatial volumes of . On the smallest lattice a tree level
improved action was employed while in the other two cases the standard Wilson
action was used. Below we find a temperature dependent logarithmic term
contributing to the confinement potential and observe a string tension which
decreases with rising temperature but retains a finite value at the
deconfinement transition. Above the potential is Debye-screened, however
simple perturbative predictions do not apply.Comment: 20 pages, 9 figure
Phase structure of lattice QCD for general number of flavors
We investigate the phase structure of lattice QCD for the general number of
flavors in the parameter space of gauge coupling constant and quark mass,
employing the one-plaquette gauge action and the standard Wilson quark action.
Performing a series of simulations for the number of flavors --360 with
degenerate-mass quarks, we find that when there is a line of a bulk
first order phase transition between the confined phase and a deconfined phase
at a finite current quark mass in the strong coupling region and the
intermediate coupling region. The massless quark line exists only in the
deconfined phase. Based on these numerical results in the strong coupling limit
and in the intermediate coupling region, we propose the following phase
structure, depending on the number of flavors whose masses are less than
which is the physical scale characterizing the phase transition in
the weak coupling region: When , there is only a trivial IR fixed
point and therefore the theory in the continuum limit is free. On the other
hand, when , there is a non-trivial IR fixed point and
therefore the theory is non-trivial with anomalous dimensions, however, without
quark confinement. Theories which satisfy both quark confinement and
spontaneous chiral symmetry breaking in the continuum limit exist only for .Comment: RevTeX, 20 pages, 43 PS figure
Loss, Bereavement and Creativity: Meanings and Uses
Within the field of death and bereavement studies, the assumption that loss and bereavement provide the spur to creativity has become so widespread as to assume the status of a conventional wisdom. With this in mind, this article surveys the literature on the topic, extant, and contemporary, revealing its diffuseness as well as the multidisciplinary synergies produced by those working in disparate academic and clinical fields of practice. In so doing, the article explores what it means to be creative in the context of loss and bereavement, the potential for self-development and personal growth offered by creativity and loss, the theoretical premises linking creativity and loss, and the application and challenges for creative therapies in the institutional context of hospice and palliative car
Temporal Structures in Electron Spectra and Charge Sign Effects in Galactic Cosmic Rays
We present the precision measurements of 11 years of daily cosmic electron fluxes in the rigidity interval from 1.00 to 41.9 GV based on 2.0 ×108 electrons collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The electron fluxes exhibit variations on multiple timescales. Recurrent electron flux variations with periods of 27 days, 13.5 days, and 9 days are observed. We find that the electron fluxes show distinctly different time variations from the proton fluxes. Remarkably, a hysteresis between the electron flux and the proton flux is observed with a significance of greater than 6 σ at rigidities below 8.5 GV. Furthermore, significant structures in the electron-proton hysteresis are observed corresponding to sharp structures in both fluxes. This continuous daily electron data provide unique input to the understanding of the charge sign dependence of cosmic rays over an 11-year solar cycle
Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station
Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R[superscript Δ] with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.National Science Foundation (U.S.) (Grants 1455202 and 1551980)Wyle Research (Firm) (Grant 2014/T72497)United States. National Aeronautics and Space Administration (NASA Earth and Space Science Fellowship Grant HELIO15F-0005
- …
