10,068 research outputs found

    Identity and identification of Trogulus banaticus (Opiliones: Trogulidae) : a neglected species in the Northern Balkans

    Get PDF
    Trogulus banaticus Avram, 1971 is characterised and recorded as new for Slovenia. This species was previously mistaken for T. coriziformis C. L. Koch, 1839 and T. graecus Dahl, 1903 which were later rejected from the Slovenian fauna. T. banaticus is compared with the similar, and partly sympatric, T. tingiformis C. L. Koch, 1847 with which it has often been confused. A table of distinguishing characters for both species is provided, and the ecology of T. banaticus and its general distribution are discussed

    Core-Cusp revisited and Dark Matter Phase Transition Constrained at O(0.1) eV with LSB Rotation Curve

    Full text link
    Recently a new particle physics model called Bound Dark Matter (BDM) has been proposed in which dark matter (DM) particles are massless above a threshold energy (Ec) and acquire mass below it due to nonperturbative methods. Therefore, the BDM model describes DM particles which are relativistic, hot dark matter, in the inner regions of galaxies and describes nonrelativistic, cold dark matter, where halo density is below rho_c = Ec^4. To realize this idea in galaxies we use a particular DM cored profile that contains three parameters: a scale length (rs) and density (rho_0) of the halo, and a core radius (rc) stemming from the relativistic nature of the BDM model. We test this model by fitting rotation curves of seventeen Low Surface Brightness galaxies from The HI Nearby Galaxy Survey (THINGS). Since the energy Ec parameterizes the phase transition due to the underlying particle physics model, it is independent on the details of galaxy or structure formation and therefore the DM profile parameters rs, rc, Ec are constrained, leaving only two free parameters. The high spatial and velocity resolution of this sample allows to derive the model parameters through the numerical implementation of the chi^2-goodness-of-fit test to the mass models. We compare the fittings with those of Navarro-Frenk-White (NFW), Burkert, and Pseudo-Isothermal (ISO) profiles. Through the results we conclude that the BDM profile fits better, or equally well, than NFW, Burkert, and ISO profiles and agree with previous results implying that cored profiles are preferred over the N-body motivated cuspy profile. We also compute 2D likelihoods of the BDM parameters rc and Ec for the different galaxies and matter contents, and find an average galaxy core radius rc=300 pc and a transition energy Ec = 0.11 eV when the DM halo is the only component. In Kroupa mass model, we obtain a core rc=1.48 kpc, and energy Ec=0.06 eV.Comment: 54 pages, 26 Figures. Submitted to Phys. Rev. D. Refer also to Phys.Rev.D84:121301,201

    Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk

    Full text link
    This paper introduces an open-ended sequential algorithm for computing the p-value of a test using Monte Carlo simulation. It guarantees that the resampling risk, the probability of a different decision than the one based on the theoretical p-value, is uniformly bounded by an arbitrarily small constant. Previously suggested sequential or non-sequential algorithms, using a bounded sample size, do not have this property. Although the algorithm is open-ended, the expected number of steps is finite, except when the p-value is on the threshold between rejecting and not rejecting. The algorithm is suitable as standard for implementing tests that require (re-)sampling. It can also be used in other situations: to check whether a test is conservative, iteratively to implement double bootstrap tests, and to determine the sample size required for a certain power.Comment: Major Revision 15 pages, 4 figure

    1904 (Arachnida: Opiliones)

    Get PDF
    www.mapress.com/zootaxa

    Hysteresis between distinct modes of turbulent dynamos

    Full text link
    Nonlinear mean-field models of the solar dynamo show long-term variability, which may be relevant to different states of activity inferred from long-term radiocarbon data. This paper is aimed to probe the dynamo hysteresis predicted by the recent mean-field models of Kitchatinov \& Olemskoy (2010) with direct numerical simulations. We perform three-dimensional simulations of large-scale dynamos in a shearing box with helically forced turbulence. As initial condition, we either take a weak random magnetic field or we start from a snapshot of an earlier simulation. Two quasi-stable states are found to coexist in a certain range of parameters close to the onset of the large-scale dynamo. The simulations converge to one of these states depending on the initial conditions. When either the fractional helicity or the magnetic Prandtl number is increased between successive runs above the critical value for onset of the dynamo, the field strength jumps to a finite value. However, when the fractional helicity or the magnetic Prandtl number is then decreased again, the field strength stays at a similar value (strong field branch) even below the original onset. We also observe intermittent decaying phases away from the strong field branch close to the point where large-scale dynamo action is just possible. The dynamo hysteresis seen previously in mean-field models is thus reproduced by 3D simulations. Its possible relation to distinct modes of solar activity such as grand minima is discussed.Comment: Published in Ap
    corecore