18,949 research outputs found
Antiferromagnetic noise correlations in optical lattices
We analyze how noise correlations probed by time-of-flight (TOF) experiments
reveal antiferromagnetic (AF) correlations of fermionic atoms in
two-dimensional (2D) and three-dimensional (3D) optical lattices. Combining
analytical and quantum Monte Carlo (QMC) calculations using experimentally
realistic parameters, we show that AF correlations can be detected for
temperatures above and below the critical temperature for AF ordering. It is
demonstrated that spin-resolved noise correlations yield important information
about the spin ordering. Finally, we show how to extract the spin correlation
length and the related critical exponent of the AF transition from the noise.Comment: 4 pages, 4 figure
Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications
We present a simple implementation of the dynamical mean-field theory
approach to the electronic structure of strongly correlated materials. This
implementation achieves full self-consistency over the charge density, taking
into account correlation-induced changes to the total charge density and
effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used,
and the charge density is computed from moments of the many body
momentum-distribution matrix. The calculation of the total energy is also
considered, with a proper treatment of high-frequency tails of the Green's
function and self-energy. The method is illustrated on two materials with
well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the
gamma-phase of metallic cerium, using the Hubbard-I approximation to the
dynamical mean-field self-energy. The momentum-integrated spectral function and
momentum-resolved dispersion of the Hubbard bands are calculated, as well as
the volume-dependence of the total energy. We show that full self-consistency
over the charge density, taking into account its modification by strong
correlations, can be important for the computation of both thermodynamical and
spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B
Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices
We suggest a simple experimental method for probing antiferromagnetic spin
correlations of two-component Fermi gases in optical lattices. The method
relies on a spin selective Raman transition to excite atoms of one spin species
to their first excited vibrational mode where the tunneling is large. The
resulting difference in the tunneling dynamics of the two spin species can then
be exploited, to reveal the spin correlations by measuring the number of doubly
occupied lattice sites at a later time. We perform quantum Monte Carlo
simulations of the spin system and solve the optical lattice dynamics
numerically to show how the timed probe can be used to identify
antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure
Applicability of the Linear delta Expansion for the lambda phi^4 Field Theory at Finite Temperature in the Symmetric and Broken Phases
The thermodynamics of a scalar field with a quartic interaction is studied
within the linear delta expansion (LDE) method. Using the imaginary-time
formalism the free energy is evaluated up to second order in the LDE. The
method generates nonperturbative results that are then used to obtain
thermodynamic quantities like the pressure. The phase transition pattern of the
model is fully studied, from the broken to the symmetry restored phase. The
results are compared with those obtained with other nonperturbative methods and
also with ordinary perturbation theory. The results coming from the two main
optimization procedures used in conjunction with the LDE method, the Principle
of Minimal Sensitivity (PMS) and the Fastest Apparent Convergence (FAC) are
also compared with each other and studied in which cases they are applicable or
not. The optimization procedures are applied directly to the free energy.Comment: 13 pages, 10 eps figures, revtex, replaced with published versio
Development status of a Laue lens project for gamma-ray astronomy
We report the status of the HAXTEL project, devoted to perform a design study
and the development of a Laue lens prototype. After a summary of the major
results of the design study, the approach adopted to develop a Demonstration
Model of a Laue lens is discussed, the set up described, and some results
presented.Comment: 11 pages, 11 figures, 2007 SPIE Conference on Optics for EUV, X-Ray,
and Gamma-Ray Astronomy II
New model for surface fracture induced by dynamical stress
We introduce a model where an isotropic, dynamically-imposed stress induces
fracture in a thin film. Using molecular dynamics simulations, we study how the
integrated fragment distribution function depends on the rate of change and
magnitude of the imposed stress, as well as on temperature. A mean-field
argument shows that the system becomes unstable for a critical value of the
stress. We find a striking invariance of the distribution of fragments for
fixed ratio of temperature and rate of change of the stress; the interval over
which this invariance holds is determined by the force fluctuations at the
critical value of the stress.Comment: Revtex, 4 pages, 4 figures available upon reques
Sow body condition at weaning and reproduction performance in organic piglet production
The objective was to investigate the variation in backfat at weaning and its relations to reproduction results in organic sow herds in Denmark. The study included eight herds and 573 sows. The average backfat at weaning mean�13 mm; SD�4.2 mm) ranging from 10.5 to 17.3 mm among herds shows that it is possible to avoid poor body condition at weaning even with a lactation length of seven weeks or more. No main effect of backfat at weaning on reproduction performance was found, but the probability of a successful reproduction after weaning tended to decrease with decreasing backfat for first parity sows, whereas the opposite was the case for multiparous sows
Coherent Quantum-Noise Cancellation for Optomechanical Sensors
Using a flowchart representation of quantum optomechanical dynamics, we
design coherent quantum-noise-cancellation schemes that can eliminate the
back-action noise induced by radiation pressure at all frequencies and thus
overcome the standard quantum limit of force sensing. The proposed schemes can
be regarded as novel examples of coherent feedforward quantum control.Comment: 4 pages, 5 figures, v2: accepted by Physical Review Letter
Competing superconducting and magnetic order parameters and field-induced magnetism in electron doped Ba(FeCo)As
We have studied the magnetic and superconducting properties of
Ba(FeCo)As as a function of temperature and
external magnetic field using neutron scattering and muon spin rotation. Below
the superconducting transition temperature the magnetic and superconducting
order parameters coexist and compete. A magnetic field can significantly
enhance the magnetic scattering in the superconducting state, roughly doubling
the Bragg intensity at 13.5 T. We perform a microscopic modelling of the data
by use of a five-band Hamiltonian relevant to iron pnictides. In the
superconducting state, vortices can slow down and freeze spin fluctuations
locally. When such regions couple they result in a long-range ordered
antiferromagnetic phase producing the enhanced magnetic elastic scattering in
agreement with experiments.Comment: 9 pages, 6 figure
Assessing the Polarization of a Quantum Field from Stokes Fluctuation
We propose an operational degree of polarization in terms of the variance of
the projected Stokes vector minimized over all the directions of the Poincar\'e
sphere. We examine the properties of this degree and show that some problems
associated with the standard definition are avoided. The new degree of
polarization is experimentally determined using two examples: a bright squeezed
state and a quadrature squeezed vacuum.Comment: 4 pages, 2 figures. Comments welcome
- …
