36 research outputs found
Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: Recommendations for saturation divers
Saturation diving is an occupation that involves prolonged exposure to a confined, hyperoxic, hyperbaric environment. The unique and extreme environment is thought to result in disruption to physiological and metabolic homeostasis, which may impact human health and performance. Appropriate nutritional intake has the potential to alleviate and/or support many of these physiological and metabolic concerns, whilst enhancing health and performance in saturation divers. Therefore, the purpose of this review is to identify the physiological and practical challenges of saturation diving and consequently provide evidence-based nutritional recommendations for saturation divers to promote health and performance within this challenging environment. Saturation diving has a high-energy demand, with an energy intake of between 44 and 52 kcal/kg body mass per day recommended, dependent on intensity and duration of underwater activity. The macronutrient composition of dietary intake is in accordance with the current Institute of Medicine guidelines at 45-65 % and 20-35 % of total energy intake for carbohydrate and fat intake, respectively. A minimum daily protein intake of 1.3 g/kg body mass is recommended to facilitate body composition maintenance. Macronutrient intake between individuals should, however, be dictated by personal preference to support the attainment of an energy balance. A varied diet high in fruit and vegetables is highly recommended for the provision of sufficient micronutrients to support physiological processes, such as vitamin B12 and folate intake to facilitate red blood cell production. Antioxidants, such as vitamin C and E, are also recommended to reduce oxidised molecules, e.g. free radicals, whilst selenium and zinc intake may be beneficial to reinforce endogenous antioxidant reserves. In addition, tailored hydration and carbohydrate fueling strategies for underwater work are also advised
A Configurable Protocol for Quantum Entanglement Distribution to End Nodes
The primary task of a quantum repeater network is to deliver entanglement among end nodes. Most of existing entanglement distribution protocols do not consider purification, which is thus delegated to an upper layer. This is a major drawback since, once an end-to-end entangled connection (or a portion thereof) is established it cannot be purified if its fidelity (F) does not fall within an interval bounded by Fmin (greater than 0.5) and Fmax (less than 1). In this paper, we propose the Ranked Entanglement Distribution Protocol (REDiP), a connection-oriented protocol that overcomes the above drawback. This result was achieved by including in our protocol two mechanisms for carrying out jointly purification and entanglement swapping. We use simulations to investigate the impact of these mechanisms on the performance of a repeater network, in terms of throughput and fidelity. Moreover, we show how REDiP can easily be configured to implement custom entanglement swapping and purification strategies, including (but not restricted to) those adopted in two recent works
Un Metodo per l'Analisi della Fluidodinamica dei Cilindri dei Piccoli Motori a Due Tempi
Discriminating Quantum States in the Presence of a Deutschian CTC: A Simulation Analysis
In an article published in 2009, Brun et al. proved that in the presence of a 'Deutschian' closed timelike curve, one can map K distinct nonorthogonal states (hereafter, input set) to the standard orthonormal basis of a K-dimensional state space. To implement this result, the authors proposed a quantum circuit that includes, among SWAP gates, a fixed set of controlled operators (boxes) and an algorithm for determining the unitary transformations carried out by such boxes. To our knowledge, what is still missing to complete the picture is an analysis evaluating the performance of the aforementioned circuit from an engineering perspective. The objective of this article is, therefore, to address this gap through an in-depth simulation analysis, which exploits the approach proposed by Brun et al. in 2017. This approach relies on multiple copies of an input state, multiple iterations of the circuit until a fixed point is (almost) reached. The performance analysis led us to a number of findings. First, the number of iterations is significantly high even if the number of states to be discriminated against is small, such as 2 or 3. Second, we envision that such a number may be shortened as there is plenty of room to improve the unitary transformation acting in the aforementioned controlled boxes. Third, we also revealed a relationship between the number of iterations required to get close to the fixed point and the Chernoff limit of the input set used: the higher the Chernoff bound, the smaller the number of iterations. A comparison, although partial, with another quantum circuit discriminating the nonorthogonal states, proposed by Nareddula et al. in 2018, is carried out and differences are highlighted
DeSQribe: Design and Synthesize Quantum Network Interoperable Protocols for Entanglement Distribution
The Quantum Internet architecture and its associated functionality are far from being standardized. Furthermore, the protocol stack that implements the abovementioned functionality is still under development. In this work, we present a framework to DEsign and Synthesize Quantum netwoRk InteroperaBle protocols for Entanglement distribution (DeSQribe), a novel iteration of the Software-Defined Networking (SDN) paradigm. DeSQribe introduces a methodology to define and implement arbitrary entanglement distribution and distillation protocols. Distinct from adaptations of existing SDN solutions to quantum networks, DeSQribe tackles quantum-specific challenges, such as the dual nature of a data plane that accommodates classical messages and quantum states. DeSQribe defines a protocol as an ordered sequence of processing units that manipulate quantum states and exchange classical messages. This high modularity encourages software reusability. A centralized controller leverages DeSQribe and dynamically orchestrates protocols on network devices. Finally, DeSQribe's technology-agnostic nature assures seamless integration across diverse quantum technologies. We showcase how to implement and combine entanglement distribution protocols of very different natures (e.g., connectionless, connection-oriented) with DeSQribe, proving its flexibility and timeliness
