9,844 research outputs found

    Theory of electron-phonon interaction in a nonequilibrium open electronic system

    Full text link
    We study the effects of time-independent nonequilibrium drive on an open 2D electron gas system coupled to 2D longitudinal acoustic phonons using the Keldysh path integral method. The layer electron-phonon system is defined at the two-dimensional interface between a pair of three-dimensional Fermi liquid leads, which act both as a particle pump and an infinite bath. The nonequilibrium steady state is achieved in the layer by assuming the leads to be thermally equilibrated at two different chemical potentials. This subjects the layer to an out-of-plane voltage VV and drives a steady-state charge current perpendicular to the system. We compute the effects of small voltages (V\ll\w_D) on the in-plane electron-phonon scattering rate and the electron effective mass at zero temperature. We also find that the obtained onequilibrium modification to the acoustic phonon velocity and the Thomas-Fermi screening length reveal the possibility of tuning these quantities with the external voltage.Comment: 14 pages, 4 figure

    Ferrimagnetism of MnV_2O_4 spinel

    Full text link
    The spinel MnV_2O_4 is a two-sublattice ferrimagnet, with site A occupied by the Mn^{2+} ion and site B by the V^{3+} ion. The magnon of the system, the transversal fluctuation of the total magnetization, is a complicated mixture of the sublattice A and B transversal magnetic fluctuations. As a result, the magnons' fluctuations suppress in a different way the manganese and vanadium magnetic orders and one obtains two phases. At low temperature (0,T^*) the magnetic orders of the Mn and V ions contribute to the magnetization of the system, while at the high temperature (T^*,T_N), the vanadium magnetic order is suppressed by magnon fluctuations, and only the manganese ions have non-zero spontaneous magnetization. A modified spin-wave theory is developed to describe the two phases and to calculate the magnetization as a function of temperature. The anomalous M(T)M(T) curve reproduces the experimentally obtained ZFC magnetization.Comment: 4 pages, one figur

    Diagnostic for new physics in BπKB \to \pi K decays

    Full text link
    A recent analysis of BπKB \to \pi K decays concludes that present data do not clearly indicate whether (i) the standard model (or ΔI=0\Delta I=0 new physics) is sufficient, or (ii) ΔI=1\Delta I=1 new physics is needed. We show that these two possibilities can be distinguished by whether a sum rule relating the CP asymmetries of the four BπKB \to \pi K decays is valid. If case (i) is favored, the sum rule holds, and one predicts ACP(π0K0)=0.15A_{CP}(\pi^0 K^0) = -0.15, while in case (ii) fits to new physics involving large values of a color-suppressed tree amplitude entail ACP(π0K0)=0.03A_{CP}(\pi^0 K^0) = -0.03. The current experimental average ACP(π0K0)=0.01±0.10A_{CP}(\pi^0 K^0) = -0.01 \pm 0.10 must be measured a factor of at least three times more precisely in order to distinguish between the two cases.Comment: 10 pages, no figures. Submitted to Physics Letters B. Slight clarification adde

    Quantum and Classical Spins on the Spatially Distorted Kagome Lattice: Applications to Volborthite

    Full text link
    In Volborthite, spin-1/2 moments form a distorted Kagom\'e lattice, of corner sharing isosceles triangles with exchange constants JJ on two bonds and JJ' on the third bond. We study the properties of such spin systems, and show that despite the distortion, the lattice retains a great deal of frustration. Although sub-extensive, the classical ground state degeneracy remains very large, growing exponentially with the system perimeter. We consider degeneracy lifting by thermal and quantum fluctuations. To linear (spin wave) order, the degeneracy is found to stay intact. Two complementary approaches are therefore introduced, appropriate to low and high temperatures, which point to the same ordered pattern. In the low temperature limit, an effective chirality Hamiltonian is derived from non-linear spin waves which predicts a transition on increasing J/JJ'/J, from 3×3\sqrt 3\times \sqrt 3 type order to a new ferrimagnetic {\em striped chirality} order with a doubled unit cell. This is confirmed by a large-N approximation on the O(nn) model on this lattice. While the saddle point solution produces a line degeneracy, O(1/n)O(1/n) corrections select the non-trivial wavevector of the striped chirality state. The quantum limit of spin 1/2 on this lattice is studied via exact small system diagonalization and compare well with experimental results at intermediate temperatures. We suggest that the very low temperature spin frozen state seen in NMR experiments may be related to the disconnected nature of classical ground states on this lattice, which leads to a prediction for NMR line shapes.Comment: revised, section V about exact diagonalization is extensively rewritten, 17 pages, 11 figures, RevTex 4, accepted by Phys. Rev.

    Pseudogap-like phase in Ca(Fe1x_{1-x}Cox_x)2_2As2_2 revealed by 75^{75}As NQR

    Full text link
    We report 75^{75}As NQR measurements on single crystalline Ca(Fe1x_{1-x}Cox_x)2_2As2_2 (0x0.090\leq x \leq 0.09). The nuclear spin-lattice relaxation rate T11T_1^{-1} as a function of temperature TT and Co dopant concentration xx reveals a normal-state pseudogap-like phase below a crossover temperature TT^* in the under- and optimally-doped region. The resulting xx-TT phase diagram shows that, after suppression of the spin-density-wave order, TT^* intersects TcT_c falling to zero rapidly near the optimal doping regime. Possible origins of the pseudogap behavior are discussed.Comment: published in Physical Review B (regular article

    11B^{11}B NMR and Relaxation in MgB2MgB_2 Superconductor

    Full text link
    11B^{11}B NMR and nuclear spin-lattice relaxation rate (NSLR) are reported at 7.2 Tesla and 1.4 Tesla in powder samples of the intermetallic compound MgB2MgB_2 with superconducting transition temperature in zero field TcT_c = 39.2 K. From the first order quadrupole perturbed NMR specrum a quadrupole coupling frequency of 835 ±\pm 5 kHz is obtained. The Knight shift is very small and it decreases to zero in the superconducting phase. The NSLR follows a linear law with T1TT_1T = 165 ±\pm 10 (sec K) . The results in the normal phase indicate a negligible ss-character of the wave function of the conduction electrons at the Fermi level. Below TcT_c the NSLR is strongly field dependent indicating the presence of an important contribution related to the density and the thermal motion of flux lines. No coherence peak is observed at the lower field investigated (1.4 T)

    Ferromagnetically coupled dimers on the distorted Shastry-Sutherland lattice: Application to (CuCl)LaNb2O7

    Full text link
    A recent study [Tassel {\it et al.}, Phys. Rev. Lett. {\bf 105}, 167205 (2010)] has proposed a remarkable spin model for (CuCl)LaNb2O7, in which dimers are ferromagnetically coupled to each other on the distorted Shastry-Sutherland lattice. In this model, the intra-dimer exchange coupling J>0 is antiferromagnetic, while the inter-dimer exchange couplings are ferromagnetic and take different values, J_x,J_y<0, in the two bond directions. Anticipating that the highly frustrated character of this model may lead to a wide range of behaviors in (CuCl)LaNb2O7 and related compounds, we theoretically investigate the ground state phase diagram of this model in detail using the following three approaches: a strong-coupling expansion for small J_x and J_y, exact diagonalization for finite clusters, and a Schwinger boson mean field theory. When |J_x|, |J_y| <~ J, the system stays in a dimer singlet phase with a finite spin gap. This state is adiabatically connected to the decoupled-dimer limit J_x=J_y=0. We show that the magnetization process of this phase depends crucially on the spatial anisotropy of the inter-dimer couplings. The magnetization shows a jump or a smooth increase for weak and strong anisotropy, respectively, after the spin gap closes at a certain magnetic field. When |J_x| or |J_y| >~ J, quantum phase transitions to various magnetically ordered phases (ferromagnetic, collinear stripe, and spiral) occur. The Schwinger boson analysis demonstrates that quantum fluctuations split the classical degeneracy of different spiral ground states. Implications for (CuCl)LaNb2O7 and related compounds are discussed in light of our theoretical results and existing experimental data.Comment: 21 pages, 20 figure

    Nonequilibrium quantum criticality in open electronic systems

    Full text link
    A theory is presented of quantum criticality in open (coupled to reservoirs) itinerant electron magnets, with nonequilibrium drive provided by current flow across the system. Both departures from equilibrium at conventional (equilibrium) quantum critical points and the physics of phase transitions induced by the nonequilibrium drive are treated. Nonequilibrium-induced phase transitions are found to have the same leading critical behavior as conventional thermal phase transitions.Comment: 5 pages, 1 figur
    corecore