5,550 research outputs found
Novel, high throughput method to study in vitro protein release from polymer nanospheres
Controlled delivery of therapeutic protein drugs using biodegradable polymer carriers is a desired characteristic that enables effective, application-specific therapy and treatment. Previous studies have focused on protein delivery from polymers using conventional one-sample-at-a- time techniques, which are time-consuming and costly. In addition, many therapeutic proteins are in limited supply and are expensive, so it is desirable to reduce sample size for design and development of delivery devices. We have developed a rapid, high throughput technique based on a highly sensitive fluorescence-based assay to detect and quantify protein released from polyanhydrides while utilizing relatively small amounts of protein (∼40 μg). These studies focused on the release of a model protein, Texas Red conjugated bovine serum albumin, from polyanhydride copolymers based on sebacic acid (SA) and 1,6-bis(p-carboxyphenoxy)hexane (CPH). The protein release profiles were assessed simultaneously to investigate the effect of polymer device geometry (nanospheres vs films), polymer chemistry, and pH of the release medium. The results indicated that the nanosphere geometry, SA-rich chemistries, and neutral pH release medium led to a more rapid release of the protein compared to the film geometry, CPH-rich chemistries, and acidic pH release medium, respectively. This high throughput fluorescence-based method can be readily extended to study release kinetics for other proteins and polymer systems
PyCARL: A PyNN Interface for Hardware-Software Co-Simulation of Spiking Neural Network
We present PyCARL, a PyNN-based common Python programming interface for
hardware-software co-simulation of spiking neural network (SNN). Through
PyCARL, we make the following two key contributions. First, we provide an
interface of PyNN to CARLsim, a computationally-efficient, GPU-accelerated and
biophysically-detailed SNN simulator. PyCARL facilitates joint development of
machine learning models and code sharing between CARLsim and PyNN users,
promoting an integrated and larger neuromorphic community. Second, we integrate
cycle-accurate models of state-of-the-art neuromorphic hardware such as
TrueNorth, Loihi, and DynapSE in PyCARL, to accurately model hardware latencies
that delay spikes between communicating neurons and degrade performance. PyCARL
allows users to analyze and optimize the performance difference between
software-only simulation and hardware-software co-simulation of their machine
learning models. We show that system designers can also use PyCARL to perform
design-space exploration early in the product development stage, facilitating
faster time-to-deployment of neuromorphic products. We evaluate the memory
usage and simulation time of PyCARL using functionality tests, synthetic SNNs,
and realistic applications. Our results demonstrate that for large SNNs, PyCARL
does not lead to any significant overhead compared to CARLsim. We also use
PyCARL to analyze these SNNs for a state-of-the-art neuromorphic hardware and
demonstrate a significant performance deviation from software-only simulations.
PyCARL allows to evaluate and minimize such differences early during model
development.Comment: 10 pages, 25 figures. Accepted for publication at International Joint
Conference on Neural Networks (IJCNN) 202
One pion events by atmospheric neutrinos: A three flavor analysis
We study the one-pion events produced via neutral current (NC) and charged
current (CC) interactions by the atmospheric neutrinos. We analyze the ratios
of these events in the framework of oscillations between three neutrino
flavors. The ratios of the CC events induced by to that of the NC
events and a similar ratio defined with help us in distinguishing the
different regions of the neutrino parameter space.Comment: 14 pages, 4 figures (separate postscript files
Moderate deviation principle for ergodic Markov chain. Lipschitz summands
For , we propose the MDP analysis for family where
be a homogeneous ergodic Markov chain, ,
when the spectrum of operator is continuous. The vector-valued function
is not assumed to be bounded but the Lipschitz continuity of is
required. The main helpful tools in our approach are Poisson's equation and
Stochastic Exponential; the first enables to replace the original family by
with a martingale while the second to avoid the
direct Laplace transform analysis
Amphiphilic polyanhydride nanoparticles stabilize bacillus anthracis protective antigen
Advancements toward an improved vaccine against Bacillus anthracis, the causative agent of anthrax, have focused on formulations composed of the protective antigen (PA) adsorbed to aluminum hydroxide. However, due to the labile nature of PA, antigen stability is a primary concern for vaccine development. Thus, there is a need for a delivery system capable of preserving the immunogenicity of PA through all the steps of vaccine fabrication, storage, and administration. In this work, we demonstrate that biodegradable amphiphilic polyanhydride nanoparticles, which have previously been shown to provide controlled antigen delivery, antigen stability, immune modulation, and protection in a single dose against a pathogenic challenge, can stabilize and release functional PA. These nanoparticles demonstrated polymer hydrophobicity-dependent preservation of the biological function of PA upon encapsulation, storage (over extended times and elevated temperatures), and release. Specifically, fabrication of amphiphilic polyanhydride nanoparticles composed of 1,6-bis(p-carboxyphenoxy)hexane and 1,8-bis(p-carboxyphenoxy)-3,6- dioxaoctane best preserved PA functionality. These studies demonstrate the versatility and superiority of amphiphilic nanoparticles as vaccine delivery vehicles suitable for long-term storage
Neutral forces acting on intragenomic variability shape the Escherichia coli regulatory network topology
Cis-regulatory networks (CRNs) play a central role in cellular decision
making. Like every other biological system, CRNs undergo evolution,
which shapes their properties by a combination of adaptive
and nonadaptive evolutionary forces. Teasing apart these forces is
an important step toward functional analyses of the different components
of CRNs, designing regulatory perturbation experiments,
and constructing synthetic networks. Although tests of neutrality
and selection based on molecular sequence data exist, no such tests
are currently available based on CRNs. In this work, we present
a unique genotype model of CRNs that is grounded in a genomic
context and demonstrate its use in identifying portions of the
CRN with properties explainable by neutral evolutionary forces
at the system, subsystem, and operon levels.We leverage our model
against experimentally derived data from Escherichia coli. The
results of this analysis show statistically significant and substantial
neutral trends in properties previously identified as adaptive
in originラdegree distribution, clustering coefficient, and motifsラ
within the E. coli CRN. Our model captures the tightly coupled genomeヨ
interactome of an organism and enables analyses of how
evolutionary events acting at the genome level, such as mutation,
and at the population level, such as genetic drift, give rise to neutral
patterns that we can quantify in CRNs
Symmetry realization of texture zeros
We show that it is possible to enforce texture zeros in arbitrary entries of
the fermion mass matrices by means of Abelian symmetries; in this way, many
popular mass-matrix textures find a symmetry justification. We propose two
alternative methods which allow to place zeros in any number of elements of the
mass matrices that one wants. They are applicable simultaneously in the quark
and lepton sectors. They are also applicable in Grand Unified Theories. The
number of scalar fields required by our methods may be large; still, in many
interesting cases this number can be reduced considerably. The larger the
desired number of texture zeros is, the simpler are the models which reproduce
the texture.Comment: 13 pages, no figures, plain LaTeX; misprints corrected, a few
sentences changed, one reference added, final version for Eur. Phys. J.
An instrumental puzzle: the modular integration of AOLI
The Adaptive Optics Lucky Imager, AOLI, is an instrument developed to deliver
the highest spatial resolution ever obtained in the visible, 20 mas, from
ground-based telescopes. In AOLI a new philosophy of instrumental prototyping
has been applied, based on the modularization of the subsystems. This modular
concept offers maximum flexibility regarding the instrument, telescope or the
addition of future developments.Comment: 10 pages, 8 figures, Proc. SPIE 9908, Ground-based and Airborne
Instrumentation for Astronomy VI, 99082Z (August 9, 2016
Possible test for CPT invariance with correlated neutral B decays
We study breakdown of symmetry which can occur in the decay process with being a CP eigenstate. In this process, the
standard model expectations for time ordered semi-leptonic and hadronic events,
i.e. which of the two decays takes place first, can be altered in the case that
there is a violation of the symmetry. To illustrate this possibility, we
identify and study several time integrated observables. We find that an
experiment with pairs, has the capability for improving the
bound on violating parameter or perhaps observe violation.Comment: Revised version to be published in PR
PGB pair production at LHC and ILC as a probe of the topcolor-assisted technicolor models
The topcolor-assisted technicolor (TC2) model predicts some light pseudo
goldstone bosons (PGBs), which may be accessible at the LHC or ILC. In this
work we study the pair productions of the charged or neutral PGBs at the LHC
and ILC. For the productions at the LHC we consider the processes proceeding
through gluon-gluon fusion and quark-antiquark annihilation, while for the
productions at the ILC we consider both the electron-positron collision and the
photon-photon collision. We find that in a large part of parameter space the
production cross sections at both colliders can be quite large compared with
the low standard model backgrounds. Therefore, in future experiments these
productions may be detectable and allow for probing TC2 model.Comment: 26 pages, 16 figures. slight changes in the text; notations for
curves changed; references adde
- …
