303 research outputs found
Surface States of the Topological Insulator Bi_{1-x}Sb_x
We study the electronic surface states of the semiconducting alloy BiSb.
Using a phenomenological tight binding model we show that the Fermi surface of
the 111 surface states encloses an odd number of time reversal invariant
momenta (TRIM) in the surface Brillouin zone confirming that the alloy is a
strong topological insulator. We then develop general arguments which show that
spatial symmetries lead to additional topological structure, and further
constrain the surface band structure. Inversion symmetric crystals have 8 Z_2
"parity invariants", which include the 4 Z_2 invariants due to time reversal.
The extra invariants determine the "surface fermion parity", which specifies
which surface TRIM are enclosed by an odd number of electron or hole pockets.
We provide a simple proof of this result, which provides a direct link between
the surface states and the bulk parity eigenvalues. We then make specific
predictions for the surface state structure for several faces of BiSb. We next
show that mirror invariant band structures are characterized by an integer
"mirror Chern number", n_M. The sign of n_M in the topological insulator phase
of BiSb is related to a previously unexplored Z_2 parameter in the L point k.p
theory of pure Bi, which we refer to as the "mirror chirality", \eta. The value
of \eta predicted by the tight binding model for Bi disagrees with the value
predicted by a more fundamental pseudopotential calculation. This explains a
subtle disagreement between our tight binding surface state calculation and
previous first principles calculations on Bi. This suggests that the tight
binding parameters in the Liu Allen model of Bi need to be reconsidered.
Implications for existing and future ARPES experiments and spin polarized ARPES
experiments will be discussed.Comment: 15 pages, 7 figure
First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy
Convergence of density-functional supercell calculations for defect formation
energies, charge transition levels, localized defect state properties, and
defect atomic structure and relaxation is investigated using the arsenic split
interstitial in GaAs as an example. Supercells containing up to 217 atoms and a
variety of {\bf k}-space sampling schemes are considered. It is shown that a
good description of the localized defect state dispersion and charge state
transition levels requires at least a 217-atom supercell, although the defect
structure and atomic relaxations can be well converged in a 65-atom cell.
Formation energies are calculated for the As split interstitial, Ga vacancy,
and As antisite defects in GaAs, taking into account the dependence upon
chemical potential and Fermi energy. It is found that equilibrium
concentrations of As interstitials will be much lower than equilibrium
concentrations of As antisites in As-rich, -type or semi-insulating GaAs.Comment: 10 pages, 5 figure
Systematic Control of Carrier Doping without Disorder at Interface of Oxide Heterostructures
We propose a method to systematically control carrier densities at the
interface of transition-metal oxide heterostructures without introducing
disorders. By inserting non-polar layers sandwiched by polar layers, continuous
carrier doping into the interface can be realized. This method enables us to
control the total carrier densities per unit cell systematically up to high
values of the order unity.Comment: 8 pages, 9 figure
Electronic and structural properties of vacancies on and below the GaP(110) surface
We have performed total-energy density-functional calculations using
first-principles pseudopotentials to determine the atomic and electronic
structure of neutral surface and subsurface vacancies at the GaP(110) surface.
The cation as well as the anion surface vacancy show a pronounced inward
relaxation of the three nearest neighbor atoms towards the vacancy while the
surface point-group symmetry is maintained. For both types of vacancies we find
a singly occupied level at mid gap. Subsurface vacancies below the second layer
display essentially the same properties as bulk defects. Our results for
vacancies in the second layer show features not observed for either surface or
bulk vacancies: Large relaxations occur and both defects are unstable against
the formation of antisite vacancy complexes. Simulating scanning tunneling
microscope pictures of the different vacancies we find excellent agreement with
experimental data for the surface vacancies and predict the signatures of
subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
Physics and chemistry of hydrogen in the vacancies of semiconductors
Hydrogen is well known to cause electrical passivation of lattice vacancies in semiconductors. This effect follows from the chemical passivation of the dangling bonds. Recently it was found that H in the carbon vacancy of SiC forms a three-center bond with two silicon neighbors in the vacancy, and gives rise to a new electrically active state. In this paper we examine hydrogen in the anion vacancies of BN, AlN, and GaN. We find that three-center bonding of H is quite common and follows clear trends in terms of the second-neighbor distance in the lattice, the typical (two-center) hydrogen-host-atom bond length, the electronegativity difference between host atoms and hydrogen, as well as the charge state of the vacancy. Three-center bonding limits the number of H atoms a nitrogen vacancy can capture to two, and prevents electric passivation in GaAs as well
General boundary conditions for the envelope function in multiband k.p model
We have derived general boundary conditions (BC) for the multiband envelope
functions (which do not contain spurious solutions) in semiconductor
heterostructures with abrupt heterointerfaces. These BC require the
conservation of the probability flux density normal to the interface and
guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy
independent and are characteristic properties of the interface. Calculations
have been performed of the effect of the general BC on the electron energy
levels in a potential well with infinite potential barriers using a coupled two
band model. The connection with other approaches to determining BC for the
envelope function and to the spurious solution problem in the multiband k.p
model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15
issue 200
Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair
We investigated radiation-induced defects in neutron-irradiated and subsequently annealed 6H-silicon carbide (SiC) with electron paramagnetic resonance (EPR), the magnetic circular dichroism of the absorption (MCDA), and MCDA-detected EPR (MCDA-EPR). In samples annealed beyond the annealing temperature of the isolated silicon vacancy we observed photoinduced EPR spectra of spin S=1 centers that occur in orientations expected for nearest neighbor pair defects. EPR spectra of the defect on the three inequivalent lattice sites were resolved and attributed to optical transitions between photon energies of 999 and 1075 meV by MCDA-EPR. The resolved hyperfine structure indicates the presence of one single carbon nucleus and several silicon ligand nuclei. These experimental findings are interpreted with help of total energy and spin density data obtained from the standard local-spin density approximation of the density-functional theory, using relaxed defect geometries obtained from the self-consistent charge density-functional theory based tight binding scheme. We have checked several defect models of which only the photoexcited spin triplet state of the carbon antisite–carbon vacancy pair (CSi-VC) in the doubly positive charge state can explain all experimental findings. We propose that the (CSi-VC) defect is formed from the isolated silicon vacancy as an annealing product by the movement of a carbon neighbor into the vacancy
Atomic structure of dislocation kinks in silicon
We investigate the physics of the core reconstruction and associated
structural excitations (reconstruction defects and kinks) of dislocations in
silicon, using a linear-scaling density-matrix technique. The two predominant
dislocations (the 90-degree and 30-degree partials) are examined, focusing for
the 90-degree case on the single-period core reconstruction. In both cases, we
observe strongly reconstructed bonds at the dislocation cores, as suggested in
previous studies. As a consequence, relatively low formation energies and high
migration barriers are generally associated with reconstructed
(dangling-bond-free) kinks. Complexes formed of a kink plus a reconstruction
defect are found to be strongly bound in the 30-degree partial, while the
opposite is true in the case of 90-degree partial, where such complexes are
found to be only marginally stable at zero temperature with very low
dissociation barriers. For the 30-degree partial, our calculated formation
energies and migration barriers of kinks are seen to compare favorably with
experiment. Our results for the kink energies on the 90-degree partial are
consistent with a recently proposed alternative double-period structure for the
core of this dislocation.Comment: 12 pages, two-column style with 8 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#rn_di
An automated quasi-continuous capillary refill timing device
Capillary refill time (CRT) is a simple means of cardiovascular assessment which is widely used in clinical care. Currently, CRT is measured through manual assessment of the time taken for skin tone to return to normal colour following blanching of the skin surface. There is evidence to suggest that manually assessed CRT is subject to bias from ambient light conditions, a lack of standardisation of both blanching time and manually applied pressure, subjectiveness of return to normal colour, and variability in the manual assessment of time. We present a novel automated system for CRT measurement, incorporating three components: a non-invasive adhesive sensor incorporating a pneumatic actuator, a diffuse multi-wavelength reflectance measurement device, and a temperature sensor; a battery operated datalogger unit containing a self contained pneumatic supply; and PC based data analysis software for the extraction of refill time, patient skin surface temperature, and sensor signal quality.
Through standardisation of the test, it is hoped that some of the shortcomings of manual CRT can be overcome. In addition, an automated system will facilitate easier integration of CRT into electronic record keeping and clinical monitoring or scoring systems, as well as reducing demands on clinicians.
Summary analysis of volunteer (n = 30) automated CRT datasets are presented, from 15 healthy adults and 15 healthy children (aged from 5 to 15 years), as their arms were cooled from ambient temperature to 5°C. A more detailed analysis of two typical datasets is also presented, demonstrating that the response of automated CRT to cooling matches that of previously published studies
Self-consistent solution of Kohn-Sham equations for infinitely extended systems with inhomogeneous electron gas
The density functional approach in the Kohn-Sham approximation is widely used
to study properties of many-electron systems. Due to the nonlinearity of the
Kohn-Sham equations, the general self-consistence searching method involves
iterations with alternate solving of the Poisson and Schr\"{o}dinger equations.
One of problems of such an approach is that the charge distribution renewed by
means of the Schr\"{o}dinger equation solution does not conform to boundary
conditions of Poisson equation for Coulomb potential. The resulting instability
or even divergence of iterations manifests itself most appreciably in the case
of infinitely extended systems. The published attempts to deal with this
problem are reduced in fact to abandoning the original iterative method and
replacing it with some approximate calculation scheme, which is usually
semi-empirical and does not permit to evaluate the extent of deviation from the
exact solution. In this work, we realize the iterative scheme of solving the
Kohn-Sham equations for extended systems with inhomogeneous electron gas, which
is based on eliminating the long-range character of Coulomb interaction as the
cause of tight coupling between charge distribution and boundary conditions.
The suggested algorithm is employed to calculate energy spectrum,
self-consistent potential, and electrostatic capacitance of the semi-infinite
degenerate electron gas bounded by infinitely high barrier, as well as the work
function and surface energy of simple metals in the jellium model. The
difference between self-consistent Hartree solutions and those taking into
account the exchange-correlation interaction is analyzed. The case study of the
metal-semiconductor tunnel contact shows this method being applied to an
infinitely extended system where the steady-state current can flow.Comment: 38 pages, 9 figures, to be published in ZhETF (J. Exp. Theor. Phys.
- …
