1,959 research outputs found
Electron-phonon coupling in potassium-doped graphene: Angle-resolved photoemission spectroscopy
The electron-phonon coupling in potassium-doped graphene on Ir(111) is
studied via the renormalization of the pi* band near the Fermi level, using
angle-resolved photoemission spectroscopy. The renormalization is found to be
fairly weak and almost isotropic, with a mass enhancement parameter of lambda=
0.28(6) for both the K-M and the K-G direction. These results are found to
agree well with recent first principles calculations.Comment: 5 pages, 3 figure
Resistance-based probabilistic design by order statistics for an oil and gas deep-water well casing string affected by wear during kick load
Deep-water wells for oil and gas extraction make structural components, such as casing and tubing, work in extremely harsh environmental conditions that accelerate component degradation and increase failure probability. Therefore, it is important to properly design casing strings under these operative circumstances (Baraldi et al., 2012)
Using Expert Models in Human Reliability Analysis - A Dependence Assessment Method Based on Fuzzy Logic
International audienceIn human reliability analysis (HRA), dependence analysis refers to assessing the influence of the failure of the operators to perform one task on the failure probabilities of subsequent tasks. A commonly used approach is the technique for human error rate prediction (THERP). The assessment of the dependence level in THERP is a highly subjective judgment based on general rules for the influence of five main factors. A frequently used alternative method extends the THERP model with decision trees. Such trees should increase the repeatability of the assessments but they simplify the relationships among the factors and the dependence level. Moreover, the basis for these simplifications and the resulting tree is difficult to trace. The aim of this work is a method for dependence assessment in HRA that captures the rules used by experts to assess dependence levels and incorporates this knowledge into an algorithm and software tool to be used by HRA analysts. A fuzzy expert system (FES) underlies the method. The method and the associated expert elicitation process are demonstrated with a working model. The expert rules are elicited systematically and converted into a traceable, explicit, and computable model. Anchor situations are provided as guidance for the HRA analyst's judgment of the input factors. The expert model and the FES-based dependence assessment method make the expert rules accessible to the analyst in a usable and repeatable way, with an explicit and traceable basis
Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)
We have performed high resolution XPS experiments of the Ru(0001) surface,
both clean and covered with well-defined amounts of oxygen up to 1 ML coverage.
For the clean surface we detected two distinct components in the Ru 3d_{5/2}
core level spectra, for which a definite assignment was made using the high
resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2),
p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level
peaks which are shifted up to 1 eV to higher binding energies. Very good
agreement with density functional theory calculations of these Surface Core
Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru
SCLSs turns out to be the number of directly coordinated O atoms. Since the
calculations permit the separation of initial and final state effects, our
results give valuable information for the understanding of bonding and
screening at the surface, otherwise not accessible in the measurement of the
core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
TR-644 a novel potent tubulin binding agent induces impairment of endothelial cells function and inhibits angiogenesis.
TR-644 is a novel combretastatin A-4 (CA-4) analogue endowed with potent microtubule depolymerizing activity superior to that of the lead compound and it also has high affinity to colchicines binding site of tubulin. We tested TR-644 anti-angiogenic effects in human umbilical endothelial cells (HUVEC). It showed no significant effects on the growth of HUVEC cells at concentrations below 1,000 nM, but at much lower concentrations (10-100 nM) it induced inhibition of capillary tube formation, inhibition of endothelial cell migration and affected endothelial cell morphology as demonstrated by the disruption of the microtubule network. TR-644 also increased permeability of HUVEC cells in a time dependent manner. The molecular mechanism for the anti-vascular activity of TR-644 was investigated in detail. TR-644 caused G2/M arrest in endothelial cells and this effect correlated with downregulation of the expression of Cdc25C and Cdc2Tyr15. Moreover TR-644 inhibited VEGF-induced phosphorylation of VE-cadherin but did not prevent the VEGF-induced phosphorylation of FAK. In chick chorioallantoic membrane in vivo assay, TR-644 (0.1-1.0 pmol/egg) efficiently counteracted the strong angiogenic response induced by FGF. Also CA-4, used as reference compound, caused an antagonistic effect, but in contrast, it induced per se, a remarkable angiogenic response probably due to an inflammatory reaction in the site of treatment. In a mice allogenic tumor model, immunohistochemical staining of tumors with anti-CD31 antibody showed that TR-644 significantly reduced the number of vessel, after 24 h from the administration of a single dose (30 mg/Kg)
On morphological hierarchical representations for image processing and spatial data clustering
Hierarchical data representations in the context of classi cation and data
clustering were put forward during the fties. Recently, hierarchical image
representations have gained renewed interest for segmentation purposes. In this
paper, we briefly survey fundamental results on hierarchical clustering and
then detail recent paradigms developed for the hierarchical representation of
images in the framework of mathematical morphology: constrained connectivity
and ultrametric watersheds. Constrained connectivity can be viewed as a way to
constrain an initial hierarchy in such a way that a set of desired constraints
are satis ed. The framework of ultrametric watersheds provides a generic scheme
for computing any hierarchical connected clustering, in particular when such a
hierarchy is constrained. The suitability of this framework for solving
practical problems is illustrated with applications in remote sensing
Sweetened Drink and Snacking Cues in Adolescents. A Study Using Ecological Momentary Assessment
The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from lower SES neighborhoods. Students were recruited from high schools with a minimum level of 25% free or reduced cost lunches. Using ecological momentary assessment, participants (N=158) were trained to answer brief questionnaires on handheld PDA devices: (a) each time they ate or drank, (b) when prompted randomly, and (c) once each evening. Data were collected over 7days for each participant. Participants reported their location (e.g., school grounds, home), mood, social environment, activities (e.g., watching TV, texting), cravings, food cues (e.g., saw a snack), and food choices. Results showed that having unhealthy snacks or sweet drinks among adolescents was associated with being at school, being with friends, feeling lonely or bored, craving a drink or snack, and being exposed to food cues. Surprisingly, sweet drink consumption was associated with exercising. Watching TV was associated with consuming sweet snacks but not with salty snacks or sweet drinks. These findings identify important environmental and intrapersonal cues to poor snacking choices that may be applied to interventions designed to disrupt these food-related, cue-behavior linked habits
TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain
Background:
The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders.
Methods:
Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour.
Results:
We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity.
Conclusions:
These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response
Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow
An optical flow gradient algorithm was applied to spontaneously forming net-
works of neurons and glia in culture imaged by fluorescence optical microscopy
in order to map functional calcium signaling with single pixel resolution.
Optical flow estimates the direction and speed of motion of objects in an image
between subsequent frames in a recorded digital sequence of images (i.e. a
movie). Computed vector field outputs by the algorithm were able to track the
spatiotemporal dynamics of calcium signaling pat- terns. We begin by briefly
reviewing the mathematics of the optical flow algorithm, and then describe how
to solve for the displacement vectors and how to measure their reliability. We
then compare computed flow vectors with manually estimated vectors for the
progression of a calcium signal recorded from representative astrocyte
cultures. Finally, we applied the algorithm to preparations of primary
astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in
order to illustrate the capability of the algorithm for capturing different
types of spatiotemporal calcium activity. We discuss the imaging requirements,
parameter selection and threshold selection for reliable measurements, and
offer perspectives on uses of the vector data.Comment: 23 pages, 5 figures. Peer reviewed accepted version in press in
Annals of Biomedical Engineerin
- …
