2,641 research outputs found

    Noise from metallic surfaces -- effects of charge diffusion

    Full text link
    Non-local electrodynamic models are developed for describing metallic surfaces for a diffusive metal. The electric field noise at a distance z_0 from the surface is evaluated and compared with data from ion chips that show anomalous heating with a noise power decaying as z_0^{-4}. We find that high surface diffusion can account for the latter result.Comment: 16 pages, 2 figures. Revised version focusing on charge diffusing and anomalous heatin

    Strong contraction of the representations of the three dimensional Lie algebras

    Full text link
    For any Inonu-Wigner contraction of a three dimensional Lie algebra we construct the corresponding contractions of representations. Our method is quite canonical in the sense that in all cases we deal with realizations of the representations on some spaces of functions; we contract the differential operators on those spaces along with the representation spaces themselves by taking certain pointwise limit of functions. We call such contractions strong contractions. We show that this pointwise limit gives rise to a direct limit space. Many of these contractions are new and in other examples we give a different proof

    Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point?

    Full text link
    We investigate shear-induced crystallization in a very dense flow of mono-disperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity and temperature profiles. In particular, the model predicts a variety of multi-layer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solid-like) layers, each of which moving as a whole, separated by fluid-like regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is non-zero there, and there is energy flow through the boundaries of the "solid" layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open.Comment: 11 pages, 7 eps figures, to appear in PR

    Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation

    Full text link
    We present new singular solutions of the biharmonic nonlinear Schrodinger equation in dimension d and nonlinearity exponent 2\sigma+1. These solutions collapse with the quasi self-similar ring profile, with ring width L(t) that vanishes at singularity, and radius proportional to L^\alpha, where \alpha=(4-\sigma)/(\sigma(d-1)). The blowup rate of these solutions is 1/(3+\alpha) for 4/d\le\sigma<4, and slightly faster than 1/4 for \sigma=4. These solutions are analogous to the ring-type solutions of the nonlinear Schrodinger equation.Comment: 21 pages, 13 figures, research articl

    Singular solutions of the L^2-supercritical biharmonic Nonlinear Schrodinger equation

    Full text link
    We use asymptotic analysis and numerical simulations to study peak-type singular solutions of the supercritical biharmonic NLS. These solutions have a quartic-root blowup rate, and collapse with a quasi self-similar universal profile, which is a zero-Hamiltonian solution of a fourth-order nonlinear eigenvalue problem

    Emergence of stability in a stochastically driven pendulum: beyond the Kapitsa effect

    Full text link
    We consider a prototypical nonlinear system which can be stabilized by multiplicative noise: an underdamped non-linear pendulum with a stochastically vibrating pivot. A numerical solution of the pertinent Fokker-Planck equation shows that the upper equilibrium point of the pendulum can become stable even when the noise is white, and the "Kapitsa pendulum" effect is not at work. The stabilization occurs in a strong-noise regime where WKB approximation does not hold.Comment: 4 pages, 7 figure

    Scalable Task-Based Algorithm for Multiplication of Block-Rank-Sparse Matrices

    Full text link
    A task-based formulation of Scalable Universal Matrix Multiplication Algorithm (SUMMA), a popular algorithm for matrix multiplication (MM), is applied to the multiplication of hierarchy-free, rank-structured matrices that appear in the domain of quantum chemistry (QC). The novel features of our formulation are: (1) concurrent scheduling of multiple SUMMA iterations, and (2) fine-grained task-based composition. These features make it tolerant of the load imbalance due to the irregular matrix structure and eliminate all artifactual sources of global synchronization.Scalability of iterative computation of square-root inverse of block-rank-sparse QC matrices is demonstrated; for full-rank (dense) matrices the performance of our SUMMA formulation usually exceeds that of the state-of-the-art dense MM implementations (ScaLAPACK and Cyclops Tensor Framework).Comment: 8 pages, 6 figures, accepted to IA3 2015. arXiv admin note: text overlap with arXiv:1504.0504
    corecore