4,047 research outputs found
Chiral Symmetry Breaking and Confinement Beyond Rainbow-Ladder Truncation
A non-perturbative construction of the 3-point fermion-boson vertex which
obeys its Ward-Takahashi or Slavnov-Taylor identity, ensures the massless
fermion and boson propagators transform according to their local gauge
covariance relations, reproduces perturbation theory in the weak coupling
regime and provides a gauge independent description for dynamical chiral
symmetry breaking (DCSB) and confinement has been a long-standing goal in
physically relevant gauge theories such as quantum electrodynamics (QED) and
quantum chromodynamics (QCD). In this paper, we demonstrate that the same
simple and practical form of the vertex can achieve these objectives not only
in 4-dimensional quenched QED (qQED4) but also in its 3-dimensional counterpart
(qQED3). Employing this convenient form of the vertex \emph{ansatz} into the
Schwinger-Dyson equation (SDE) for the fermion propagator, we observe that it
renders the critical coupling in qQED4 markedly gauge independent in contrast
with the bare vertex and improves on the well-known Curtis-Pennington
construction. Furthermore, our proposal yields gauge independent order
parameters for confinement and DCSB in qQED3.Comment: 8 pages, 6 figure
Climate change: causes, effects and the ways out
Climate is a significant and lasting change in the statistical distribution of weather pattern over periods ranging from decades to millions of years. It can be a change in average condition.
Based on the broadest scale, the rate at which energy is received from the sun and the rate at which it is lost will determine the equilibrium temperature and climate of earth distributed around the globe by winds ocean currents and other mechanisms to affect the climate of different regions.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3603
Vacuum Polarization and Dynamical Chiral Symmetry Breaking: Phase Diagram of QED with Four-Fermion Contact Interaction
We study chiral symmetry breaking for fundamental charged fermions coupled
electromagnetically to photons with the inclusion of four-fermion contact
self-interaction term. We employ multiplicatively renormalizable models for the
photon dressing function and the electron-photon vertex which minimally ensures
mass anomalous dimension = 1. Vacuum polarization screens the interaction
strength. Consequently, the pattern of dynamical mass generation for fermions
is characterized by a critical number of massless fermion flavors above which
chiral symmetry is restored. This effect is in diametrical opposition to the
existence of criticality for the minimum interaction strength necessary to
break chiral symmetry dynamically. The presence of virtual fermions dictates
the nature of phase transition. Miransky scaling laws for the electromagnetic
interaction strength and the four-fermion coupling, observed for quenched QED,
are replaced by a mean-field power law behavior corresponding to a second order
phase transition. These results are derived analytically by employing the
bifurcation analysis, and are later confirmed numerically by solving the
original non-linearized gap equation. A three dimensional critical surface is
drawn to clearly depict the interplay of the relative strengths of interactions
and number of flavors to separate the two phases. We also compute the
beta-function and observe that it has ultraviolet fixed point. The power law
part of the momentum dependence, describing the mass function, reproduces the
quenched limit trivially. We also comment on the continuum limit and the
triviality of QED.Comment: 9 pages, 10 figure
Landau-Khalatnikov-Fradkin Transformations and the Fermion Propagator in Quantum Electrodynamics
We study the gauge covariance of the massive fermion propagator in three as
well as four dimensional Quantum Electrodynamics (QED). Starting from its value
at the lowest order in perturbation theory, we evaluate a non-perturbative
expression for it by means of its Landau-Khalatnikov-Fradkin (LKF)
transformation. We compare the perturbative expansion of our findings with the
known one loop results and observe perfect agreement upto a gauge parameter
independent term, a difference permitted by the structure of the LKF
transformations.Comment: 9 pages, no figures, uses revte
The nonperturbative propagator and vertex in massless quenched QED_d
It is well known how multiplicative renormalizability of the fermion
propagator, through its Schwinger-Dyson equation, imposes restrictions on the
3-point fermion-boson vertex in massless quenched quantum electrodynamics in
4-dimensions (QED). Moreover, perturbation theory serves as an excellent
guide for possible nonperturbative constructions of Green functions.
We extend these ideas to arbitrary dimensions . The constraint of
multiplicative renormalizability of the fermion propagator is generalized to a
Landau-Khalatnikov-Fradkin transformation law in -dimensions and it
naturally leads to a constraint on the fermion-boson vertex. We verify that
this constraint is satisfied in perturbation theory at the one loop level in
3-dimensions. Based upon one loop perturbative calculation of the vertex, we
find additional restrictions on its possible nonperturbative forms in arbitrary
dimensions.Comment: 13 pages, no figures, latex (uses IOP style files
Transverse Takahashi Identities and Their Implications for Gauge Independent Dynamical Chiral Symmetry Breaking
In this article, we employ transverse Takahashi identities to impose valuable
non-perturbative constraints on the transverse part of the fermion-photon
vertex in terms of new form factors, the so called functions. We show
that the implementation of these identities is crucial in ensuring the correct
local gauge transformation of the fermion propagator and its multiplicative
renormalizability. Our construction incorporates the correct symmetry
properties of the under charge conjugation operation as well as their
well-known one-loop expansion in the asymptotic configuration of incoming and
outgoing momenta. Furthermore, we make an explicit analysis of various existing
constructions of this vertex against the demands of transverse Takahashi
identities and the previously established key features of quantum
electrodynamics, such as gauge invariance of the critical coupling above which
chiral symmetry is dynamically broken. We construct a simple example in its
quenched version and compute the mass function as we vary the coupling strength
and also calculate the corresponding anomalous dimensions . There is
an excellent fit to the Miransky scalling law and we find rather
naturally in accordance with some earlier results in literature, using
arguments based on Cornwall-Jackiw-Tomboulis effective potential technique.
Moreover, we numerically confirm the gauge invariance of this critical
coupling.Comment: 16 pages, 4 figure
Adaptive sampling in context-aware systems: a machine learning approach
As computing systems become ever more pervasive, there is an increasing need for them to understand and adapt to the state of the environment around them: that is, their context. This understanding comes with considerable reliance on a range of sensors. However, portable devices are also very constrained in terms of power, and hence the amount of sensing must be minimised. In this paper, we present a machine learning architecture for context awareness which is designed to balance the sampling rates (and hence energy consumption) of individual sensors with the significance of the input from that sensor. This significance is based on predictions of the likely next context. The architecture is implemented using a selected range of user contexts from a collected data set. Simulation results show reliable context identification results. The proposed architecture is shown to significantly reduce the energy requirements of the sensors with minimal loss of accuracy in context identification
- …
