1,189 research outputs found

    Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy

    Get PDF
    Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational “hotspot” in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery (n = 2) or 8 weeks after systemic delivery (n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD

    Observational Study Design in Veterinary Pathology, Part 1: Study Design

    Get PDF
    Observational studies are the basis for much of our knowledge of veterinary pathology and are highly relevant to the daily practice of pathology. However, recommendations for conducting pathology-based observational studies are not readily available. In part 1 of this series, we offer advice on planning and conducting an observational study with examples from the veterinary pathology literature. Investigators should recognize the importance of creativity, insight, and innovation in devising studies that solve problems and fill important gaps in knowledge. Studies should focus on specific and testable hypotheses, questions, or objectives. The methodology is developed to support these goals. We consider the merits and limitations of different types of analytic and descriptive studies, as well as of prospective vs retrospective enrollment. Investigators should define clear inclusion and exclusion criteria and select adequate numbers of study subjects, including careful selection of the most appropriate controls. Studies of causality must consider the temporal relationships between variables and the advantages of measuring incident cases rather than prevalent cases. Investigators must consider unique aspects of studies based on archived laboratory case material and take particular care to consider and mitigate the potential for selection bias and information bias. We close by discussing approaches to adding value and impact to observational studies. Part 2 of the series focuses on methodology and validation of methods

    A consistent analysis of (e,e'p) and (d,3He) experiments

    Full text link
    The apparent discrepancy between spectroscopic factors obtained in (e,e'p) and (d,3He) experiments is investigated. This is performed first for 48Ca(e,e'p) and 48Ca(d,3He) experiments and then for other nuclei. It is shown that the discrepancy disappears if the (d,3He) experiments are re-analyzed with a non-local finite range DWBA analysis with a bound-state wave function that is obtained from (e,e'p) experiments.Comment: 23 pages, 7 figure

    Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress

    Get PDF
    Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops

    Coherent QCD phenomena in the Coherent Pion-Nucleon and Pion-Nucleus Production of Two Jets at High Relative Momenta

    Full text link
    We use QCD to compute the cross section for coherent production of a di-jet (treated as a qqˉq\bar q moving at high relative transverse momentum,κt\kappa_t ). In the target rest frame,the space-time evolution of this reaction is dominated by the process in which the high κt\kappa_t qqˉq\bar q component of the pion wave function is formed before reaching the target. It then interacts through two gluon exchange. In the approximation of keeping the leading order in powers of αs\alpha_s and all orders in αsln(κt2/k02),\alpha_{s}\ln(\kappa_{t}^2/k_{0}^2), the amplitudes for other processes are shown to be smaller at least by a power of αs\alpha_{s}. The resulting dominant amplitude is proportional to z(1z)κt4z(1-z) \kappa_t^{-4} (zz is the fraction light-cone(+)momentum carried by the quark in the final state) times the skewed gluon distribution of the target. For the pion scattering by a nuclear target, this means that at fixed xN=2κt2/sx_{N}= 2\kappa_{t}^2/s (but κt2\kappa_{t}^2\to \infty) the nuclear process in which there is only a single interaction is the most important one to contribute to the reaction. Thus in this limit color transparency phenomena should occur.These findings are in accord with E971 experiment at FNAL. We also re-examine a potentially important nuclear multiple scattering correction which is positive and A1/3/κt4\propto A^{1/3}/\kappa_t^4. The meaning of the signal obtained from the experimental measurement of pion diffraction into two jets is also critically examined and significant corrections are identified.We show also that for values of κt\kappa_t achieved at fixed target energies, di-jet production by the e.m. field of the nucleus leads to an insignificant correction which gets more important as κt\kappa_t increases.Comment: 23 pages, 9 figure

    Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity

    Get PDF
    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale

    Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors

    Get PDF
    Nitric oxide (NO) is an important signaling compound in prokaryotes and eukaryotes. In plants, NO regulates critical developmental transitions and stress responses. Here, we identify a mechanism for NO sensing that coordinates responses throughout development based on targeted degradation of plant-specific transcriptional regulators, the group VII ethylene response factors (ERFs). We show that the N-end rule pathway of targeted proteolysis targets these proteins for destruction in the presence of NO, and we establish them as critical regulators of diverse NO-regulated processes, including seed germination, stomatal closure, and hypocotyl elongation. Furthermore, we define the molecular mechanism for NO control of germination and crosstalk with abscisic acid (ABA) signaling through ERF-regulated expression of ABSCISIC ACID INSENSITIVE5 (ABI5). Our work demonstrates how NO sensing is integrated across multiple physiological processes by direct modulation of transcription factor stability and identifies group VII ERFs as central hubs for the perception of gaseous signals in plants

    New directions for patient-centred care in scleroderma : the Scleroderma Patient-centred Intervention Network (SPIN)

    Get PDF
    Systemic sclerosis (SSc), or scleroderma, is a chronic multisystem autoimmune disorder characterised by thickening and fibrosis of the skin and by the involvement of internal organs such as the lungs, kidneys, gastrointestinal tract, and heart. Because there is no cure, feasibly-implemented and easily accessible evidence-based interventions to improve health-related quality of life (HRQoL) are needed. Due to a lack of evidence, however, specific recommendations have not been made regarding non-pharmacological interventions (e.g. behavioural/psychological, educational, physical/occupational therapy) to improve HRQoL in SSc. The Scleroderma Patient-centred Intervention Network (SPIN) was recently organised to address this gap. SPIN is comprised of patient representatives, clinicians, and researchers from Canada, the USA, and Europe. The goal of SPIN, as described in this article, is to develop, test, and disseminate a set of accessible interventions designed to complement standard care in order to improve HRQoL outcomes in SSc.The initial organisational meeting for SPIN was funded by a Canadian Institutes of Health Research (CIHR) Meetings, Planning, and Dissemination grant to B.D. Thombs (KPE-109130), Sclerodermie Quebec, and the Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, Quebec. SPIN receives finding support from the Sclemderma Society of Ontario, the Scleroderma Society of Canada, and Sclerodermie Quebec. B.D. Thombs and M. Hudson are supported by New Investigator awards from the CIHR, and Etablissement de Jeunes Chercheurs awards from the Fonds de la Recherche en Sante Quebec (FRSQ). M. Baron is the director of the Canadian Scleroderma Research Group, which receives grant folding from the CIHR, the Scleroderma Society of Canada and its provincial chapters, Scleroderma Society of Ontario, Sclerodermie Quebec, and the Ontario Arthritis Society, and educational grants from Actelion Pharmaceuticals and Pfizer. M.D. Mayes and S. Assassi are supported by the NIH/NIAMS Scleroderma Center of Research Translation grant no. P50-AR054144. S.J. Motivala is supported by an NIH career development grant (K23 AG027860) and the UCLA Cousins Center for Psychoneuroimmunology. D. Khanna is supported by a NIH/NIAMS K23 AR053858-04) and NIH/NIAMS U01 AR057936A, the National Institutes of Health through the NIH Roadmap for Medical Research Grant (AR052177), and has served as a consultant or on speakers bureau for Actelion, BMS, Gilead, Pfizer, and United Therapeutics

    Pre-operative extracranial and intracranial EEG investigation in patients with temporal lobe epilepsy: trends, results and review of pathophysiologic mechanisms

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66297/1/j.1600-0404.1988.tb08004.x.pd
    corecore