2,910 research outputs found
High-Stakes Testing and Student Achievement: Problems for the No Child Left Behind Act
Under the federal No Child Left Behind Act of 2001 (NCLB), standardized test scores are the indicator used to hold schools and school districts accountable for student achievement. Each state is responsible for constructing an accountability system, attaching consequences -- or stakes -- for student performance. The theory of action implied by this accountability program is that the pressure of high-stakes testing will increase student achievement. But this study finds that pressure created by high-stakes testing has had almost no important influence on student academic performance
Simulation of electron paramagnetic resonance spectra of spin-labeled molecules from replica-exchange molecular dynamics
Spatio-Temporal Hierarchical Bayesian Modeling: Tropical Ocean Surface Winds
This is the author's version of the article found in the Journal of the American Statistical Association. The publisher's version can be found at http://pubs.amstat.org/loi/jasa.Spatio-temporal processes are ubiquitous in the environmental and physical sciences. This is certainly true of atmospheric and oceanic processes, which typically exhibit many different scales of spatial and temporal variability. The complexity of these processes and large number of observation/prediction locations preclude the use of traditional covariance-based space-time statistical methods. Alternatively, we focus on conditionally-specified (i.e., hierarchical) spatio-temporal models. These methods offer several advantages over traditional approaches. Primarily, physical and dynamical constraints are easily incorporated into the conditional formulation, so that the series of relatively simple, yet physically realistic, conditional models leads to a much more complicated space-time covariance structure than can be specified directly. Furthermore, by making use of the sparse structure inherent
in the hierarchical approach, as well as multiresolution (wavelet) bases, the models
are computable with very large datasets. This modeling approach was necessitated by a scientifically meaningful problem in the geosciences. Satellite-derived wind estimates
have high spatial resolution but are limited in global coverage. In contrast, wind fields provided by the major weather centers provide complete coverage but have low spatial resolution. The goal is to combine these data in a manner that incorporates the space-time dynamics inherent in the surface wind field. This is an essential task to enable meteorological research as no complete high resolution surface wind datasets exist over the world oceans. High resolution datasets of this kind are crucial for improving our understanding of: global air-sea interactions affecting climate, tropical disturbances, and for driving large-scale ocean circulation
models.Support for this research was provided for CKW, DN, and LMB by the NCAR Geophysical Statistics Project, sponsored by the National Science Foundation (NSF) under Grant DMS93-12686. Support for RFM and CKW is provided by the NCAR NSCAT Science Working Team cooperative agreement with NASA JPL. NCAR is supported in part by
the NSF
A study of the deep structure of the energy landscape of glassy polystyrene: the exponential distribution of the energy-barriers revealed by high-field Electron Spin Resonance spectroscopy
The reorientation of one small paramagnetic molecule (spin probe) in glassy
polystyrene (PS) is studied by high-field Electron Spin Resonance spectroscopy
at two different Larmor frequencies (190 and 285 GHz). The exponential
distribution of the energy-barriers for the rotational motion of the spin probe
is unambigously evidenced at both 240K and 270K. The same shape for the
distribution of the energy-barriers of PS was evidenced by the master curves
provided by previous mechanical and light scattering studies. The breadth of
the energy-barriers distribution of the spin probe is in the range of the
estimates of the breadth of the PS energy-barriers distribution. The evidence
that the deep structure of the energy landscape of PS exhibits the exponential
shape of the energy-barriers distribution agrees with results from
extreme-value statistics and the trap model by Bouchaud and coworkers.Comment: Final version in press as Letter to the Editor on J.Phys.:Condensed
Matter. Changes in bol
Hierarchical Bayesian Approach to Boundary Value Problems with Stochastic Boundary Conditions
This is the pre-print version of the article found in the Monthly Weather Review (http://journals.ametsoc.org/toc/mwre/138/10).Boundary value problems are ubiquitous in the atmospheric and ocean sciences. Typical settings include bounded, partially bounded, global and limited area domains, discretized for applications of numerical models of
the relevant fluid equations. Often, limited area models are constructed to interpret intensive datasets collected over a specific region, from a variety of observational platforms. These data are noisy and they typically do not span the domain of interest uniformly in space and time. Traditional
numerical procedures cannot easily account for these uncertainties. A hierarchical Bayesian modeling framework is developed for solving boundary value problems in such settings. By allowing the boundary process to be stochastic, and conditioning the interior process on this boundary, one can account for the uncertainties in the boundary process in a reasonable fashion. In the presence of data and all its uncertainties, this idea can be related through Bayes' Theorem to produce distributions of the interior process given the observational data. The method is illustrated with an example of obtaining atmospheric streamfunction fields in the Labrador Sea region, given scatterometer-derived observations of the surface wind field
Better Nonlinear Models from Noisy Data: Attractors with Maximum Likelihood
A new approach to nonlinear modelling is presented which, by incorporating
the global behaviour of the model, lifts shortcomings of both least squares and
total least squares parameter estimates. Although ubiquitous in practice, a
least squares approach is fundamentally flawed in that it assumes independent,
normally distributed (IND) forecast errors: nonlinear models will not yield IND
errors even if the noise is IND. A new cost function is obtained via the
maximum likelihood principle; superior results are illustrated both for small
data sets and infinitely long data streams.Comment: RevTex, 11 pages, 4 figure
Putting theory oriented evaluation into practice
Evaluations of gaming simulations and business games as teaching devices are typically end-state driven. This emphasis fails to detect how the simulation being evaluated does or does not bring about its desired consequences. This paper advances the use of a logic model approach which possesses a holistic perspective that aims at including all elements associated with the situation created by a game. The use of the logic model approach is illustrated as applied to Simgame, a board game created for secondary school level business education in six European Union countries
The Advanced LIGO Photon Calibrators
The two interferometers of the Laser Interferometry Gravitaional-wave
Observatory (LIGO) recently detected gravitational waves from the mergers of
binary black hole systems. Accurate calibration of the output of these
detectors was crucial for the observation of these events, and the extraction
of parameters of the sources. The principal tools used to calibrate the
responses of the second-generation (Advanced) LIGO detectors to gravitational
waves are systems based on radiation pressure and referred to as Photon
Calibrators. These systems, which were completely redesigned for Advanced LIGO,
include several significant upgrades that enable them to meet the calibration
requirements of second-generation gravitational wave detectors in the new era
of gravitational-wave astronomy. We report on the design, implementation, and
operation of these Advanced LIGO Photon Calibrators that are currently
providing fiducial displacements on the order of
m/ with accuracy and precision of better than 1 %.Comment: 14 pages, 19 figure
- …
