3,383 research outputs found
Meson-Baryon s-wave Resonances with Strangeness -3
Starting from a consistent SU(6) extension of the Weinberg-Tomozawa (WT)
meson-baryon chiral Lagrangian (Phys. Rev. D74 (2006) 034025), we study the
s-wave meson-baryon resonances in the strangeness S=-3 and negative parity
sector. Those resonances are generated by solving the Bethe-Salpeter equation
with the WT interaction used as kernel. The considered mesons are those of the
35-SU(6)-plet, which includes the pseudoscalar (PS) octet of pions and the
vector (V) nonet of the rho meson. For baryons we consider the 56-SU(6)-plet,
made of the 1/2+ octet of the nucleon and the 3/2+ decuplet of the Delta.
Quantum numbers I(J^P)=0(3/2^-) are suggested for the experimental resonances
Omega*(2250)- and Omega*(2380)-. Among other, resonances with I=1 are found,
with minimal quark content sss\bar{l}l', being s the strange quark and l, l'
any of the the light up or down quarks. A clear signal for such a pentaquark
would be a baryonic resonance with strangeness -3 and electric charge of -2 or
0, in proton charge units. We suggest looking for K- Xi- resonances with masses
around 2100 and 2240 MeV in the sector 1(1/2^-), and for pi Omega- and K- Xi*-
resonances with masses around 2260 MeV in the sector 1(3/2^-).Comment: 3 pages, 1 Postscript figure, 7 table
Coarsening scenarios in unstable crystal growth
Crystal surfaces may undergo thermodynamical as well kinetic,
out-of-equilibrium instabilities. We consider the case of mound and pyramid
formation, a common phenomenon in crystal growth and a long-standing problem in
the field of pattern formation and coarsening dynamics. We are finally able to
attack the problem analytically and get rigorous results. Three dynamical
scenarios are possible: perpetual coarsening, interrupted coarsening, and no
coarsening. In the perpetual coarsening scenario, mound size increases in time
as L=t^n, where the coasening exponent is n=1/3 when faceting occurs, otherwise
n=1/4.Comment: Changes in the final part. Accepted for publication in Phys. Rev.
Let
Wavelet analysis of the LF radio signals collected by the European VLF/LF network from July 2009 to April 2011
In 2008, a radio receiver that works in very low frequency (VLF; 20-60 kHz) and LF (150-300 kHz) bands was developed by an Italian factory. The
receiver can monitor 10 frequencies distributed in these bands, with the measurement for each of them of the electric field intensity. Since 2009, to
date, six of these radio receivers have been installed throughout Europe to establish a ‘European VLF/LF Network’. At present, two of these are into
operation in Italy, and the remaining four are located in Greece, Turkey, Portugal and Romania. For the present study, the LF radio data collected
over about two years were analysed. At first, the day-time data and the night-time data were separated for each radio signal. Taking into account
that the LF signals are characterized by ground-wave and sky-wave propagation modes, the day-time data are related to the ground wave and
the night-time data to the sky wave. In this framework, the effects of solar activity and storm activity were defined in the different trends. Then, the
earthquakes with M ≥5.0 that occurred over the same period were selected, as those located in a 300-km radius around each receiver/transmitter and
within the 5th Fresnel zone related to each transmitter-receiver path. Where possible, the wavelet analysis was applied on the time series of the radio
signal intensity, and some anomalies related to previous earthquakes were revealed. Except for some doubt in one case, success appears to have been obtained in all of the cases related to the 300 km circles in for the ground waves and the sky waves. For the Fresnel cases, success in two cases and one
failure were seen in analysing the sky waves. The failure occurred in August/September, and might be related to the disturbed conditions of the ionosphere in summer
Simulation of VUV electroluminescence in micropattern gaseous detectors: the case of GEM and MHSP
Electroluminescence produced during avalanche development in gaseous
avalanche detectors is an useful information for triggering, calorimetry and
tracking in gaseous detectors. Noble gases present high electroluminescence
yields, emitting mainly in the VUV region. The photons can provide signal
readout if appropriate photosensors are used. Micropattern gaseous detectors
are good candidates for signal amplification in high background and/or low rate
experiments due to their high electroluminescence yields and radiopurity. In
this work, the VUV light responses of the Gas Electron Multiplier and of the
Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in
detail using a new and versatile C++ toolkit. It is shown that the solid angle
subtended by a photosensor placed below the microstructures depends on the
operating conditions. The obtained absolute EL yields, determined for different
gas pressures and as functions of the applied voltage, are compared with those
determined experimentally.Comment: Accepted for publication in Journal of Instrumentatio
Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures
A study of the gas pressure effect in the position resolution of an
interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic
position resolution for pure noble gases (Argon and Xenon) and their mixtures
with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for
photon energies between 5.4 and 60.0 keV, being possible to establish a linear
match between the intrinsic position resolution and the inverse of the gas
pressure in that energy range. In order to evaluate the quality of the method
here described, a comparison between the available experimental data and the
calculated one in this work, is done and discussed. In the majority of the
cases, a strong agreement is observed
Evaluations of the morphologic structure and development of the pequi seed (Caryocar Braziliense Camb.) (Caryocaraceae) using images of magnetic resonance tomography.
Anomalies Observed in VLF and LF Radio Signals on the Occasion of the Western Turkey Earthquake (Mw = 5.7) on May 19, 2011
VLF radio signals lie in the 10 - 60 kHz frequency band. These radio signals are used for worldwide navigation support, time signals and for military purposes. They are propagated in the earth-ionosphere wave-guide mode along great circle propagation paths. So, their propaga-tion is strongly affected by the ionosphere conditions. LF signals lie in 150 - 300 kHz frequency band. They are used for long way broadcasting by the few (this type of broadcasting is going into disuse) transmitters located in the world. These radio signals are characterized by the ground wave and the sky wave propagation modes [1]. The first generates a stable signal that propagates in the channel Earth-troposphere and is affected by the surface ground and troposphere condition. The second instead gives rise to a signal which varies greatly between day and night, and between summer and winter, and which propagates using the lower ionosphere as a reflector; its propagation is mainly affected by the ionosphere condi-tion, particularly in the zone located in the middle of the transmitter-receiver path. The propagation of the VLF/LF radio signals is affected by different factors such as the meteorological condition, the solar bursts and the geo-magnetic activity. At the same time, variations of some parameters in the ground, in the atmosphere and in the ionosphere occurring during the preparatory phase of earthquakes can produce disturbances in the above men-tioned signals. As already reported by many previous studies [2-18] the disturbances are classified as anoma-lies and different methods of analysis as the residual dA/ dP [15], the terminator time TT [9], the Wavelet spectra and the Principal Component Analysis have been used [6,7].
Here the analysis carried out on LF and VLF radio signals using three different methods on the occasion of a strong earthquake occurred recently in Turkey is pre-sented
- …
