682 research outputs found
Galaxy Clusters Discovered via the Sunyaev-Zel'dovich Effect in the 2500-Square-Degree SPT-SZ Survey
We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg^2 of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg^2 SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M_(500c(ρcrit)) ~ 3.5 x 10^(14)M_☉ h_(70)^(-1), the median redshift is z_(med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution
Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: Statistical and systematic error budgets for future experiments
We develop a Maximum Likelihood estimator (MLE) to measure the masses of
galaxy clusters through the impact of gravitational lensing on the temperature
and polarization anisotropies of the cosmic microwave background (CMB). We show
that, at low noise levels in temperature, this optimal estimator outperforms
the standard quadratic estimator by a factor of two. For polarization, we show
that the Stokes Q/U maps can be used instead of the traditional E- and B-mode
maps without losing information. We test and quantify the bias in the recovered
lensing mass for a comprehensive list of potential systematic errors. Using
realistic simulations, we examine the cluster mass uncertainties from
CMB-cluster lensing as a function of an experiment's beam size and noise level.
We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT,
and Simons Array experiments with 10,000 clusters and less than 1% for the
CMB-S4 experiment with a sample containing 100,000 clusters. The mass
constraints from CMB polarization are very sensitive to the experimental beam
size and map noise level: for a factor of three reduction in either the beam
size or noise level, the lensing signal-to-noise improves by roughly a factor
of two.Comment: 28 pages, 5 figures: figs 2, 3 updated, references added: accepted
for publication in JCA
The Evolution of the Intracluster Medium Metallicity in Sunyaev-Zel'dovich-Selected Galaxy Clusters at 0 < z < 1.5
We present the results of an X-ray spectral analysis of 153 galaxy clusters
observed with the Chandra, XMM-Newton, and Suzaku space telescopes. These
clusters, which span 0 < z < 1.5, were drawn from a larger, mass-selected
sample of galaxy clusters discovered in the 2500 square degree South Pole
Telescope Sunyaev Zel'dovich (SPT-SZ) survey. With a total combined exposure
time of 9.1 Ms, these data yield the strongest constraints to date on the
evolution of the metal content of the intracluster medium (ICM). We find no
evidence for strong evolution in the global (r<R500) ICM metallicity (dZ/dz =
-0.06 +/- 0.04 Zsun), with a mean value at z=0.6 of = 0.23 +/- 0.01 Zsun
and a scatter of 0.08 +/- 0.01 Zsun. These results imply that >60% of the
metals in the ICM were already in place at z=1 (at 95% confidence), consistent
with the picture of an early (z>1) enrichment. We find, in agreement with
previous works, a significantly higher mean value for the metallicity in the
centers of cool core clusters versus non-cool core clusters. We find weak
evidence for evolution in the central metallicity of cool core clusters (dZ/dz
= -0.21 +/- 0.11 Zsun), which is sufficient to account for this enhanced
central metallicity over the past ~10 Gyr. We find no evidence for metallicity
evolution outside of the core (dZ/dz = -0.03 +/- 0.06 Zsun), and no significant
difference in the core-excised metallicity between cool core and non-cool core
clusters. This suggests that strong radio-mode AGN feedback does not
significantly alter the distribution of metals at r>0.15R500. Given the
limitations of current-generation X-ray telescopes in constraining the ICM
metallicity at z>1, significant improvements on this work will likely require
next-generation X-ray missions.Comment: 11 pages, 8 figures, 2 tables. Submitted to ApJ. Comments welcome
Star-Forming Brightest Cluster Galaxies at 0.25 < z < 1.25: A Transitioning Fuel Supply
We present a multi-wavelength study of 90 brightest cluster galaxies (BCGs)
in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by
the South Pole Telescope, utilizing data from various ground- and space-based
facilities. We infer the star formation rate (SFR) for the BCG in each cluster,
based on the UV and IR continuum luminosity, as well as the [O II] emission
line luminosity in cases where spectroscopy is available, finding 7 systems
with SFR > 100 Msun/yr. We find that the BCG SFR exceeds 10 Msun/yr in 31 of 90
(34%) cases at 0.25 < z < 1.25, compared to ~1-5% at z ~ 0 from the literature.
At z > 1, this fraction increases to 92(+6)(-31)%, implying a steady decrease
in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific star
formation rate in BCGs is declining more slowly with time than for field or
cluster galaxies, most likely due to the replenishing fuel from the cooling ICM
in relaxed, cool core clusters. At z > 0.6, the correlation between cluster
central entropy and BCG star formation - which is well established at z ~ 0 -
is not present. Instead, we find that the most star-forming BCGs at high-z are
found in the cores of dynamically unrelaxed clusters. We investigate the
rest-frame near-UV morphology of a subsample of the most star-forming BCGs
using data from the Hubble Space Telescope, finding complex, highly asymmetric
UV morphologies on scales as large as ~50-60 kpc. The high fraction of
star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times
suggests that the dominant mode of fueling star formation in BCGs may have
recently transitioned from galaxy-galaxy interactions to ICM cooling.Comment: 20 pages, 10 figures. Submitted for publication in ApJ. Comments
welcom
Consistency of cosmic microwave background temperature measurements in three frequency bands in the 2500-square-degree SPT-SZ survey
We present an internal consistency test of South Pole Telescope (SPT)
measurements of the cosmic microwave background (CMB) temperature anisotropy
using three-band data from the SPT-SZ survey. These measurements are made from
observations of ~2500 deg^2 of sky in three frequency bands centered at 95,
150, and 220 GHz. We combine the information from these three bands into six
semi-independent estimates of the CMB power spectrum (three single-frequency
power spectra and three cross-frequency spectra) over the multipole range 650 <
l < 3000. We subtract an estimate of foreground power from each power spectrum
and evaluate the consistency among the resulting CMB-only spectra. We determine
that the six foreground-cleaned power spectra are consistent with the null
hypothesis, in which the six cleaned spectra contain only CMB power and noise.
A fit of the data to this model results in a chi-squared value of 236.3 for 235
degrees of freedom, and the probability to exceed this chi-squared value is
46%.Comment: 21 pages, 4 figures, current version matches version published in
JCA
Optical followup of galaxy clusters detected by the South Pole Telescope
The South Pole Telescope (SPT) is a 10 meter telescope operating at mm
wavelengths. It has recently completed a three-band survey covering 2500 sq.
degrees. One of the survey's main goals is to detect galaxy clusters using
Sunyaev-Zeldovich effect and use these clusters for a variety of cosmological
and astrophysical studies such as the dark energy equation of state, the
primordial non-gaussianity and the evolution of galaxy populations. Since 2005,
we have been engaged in a comprehensive optical and near-infrared followup
program (at wavelengths between 0.4 and 5 {\mu}m) to image high-significance
SPT clusters, to measure their photometric redshifts, and to estimate the
contamination rate of the candidate lists. These clusters are then used for
various cosmological and astrophysical studies.Comment: For TAUP 2011 proceeding
The Spitzer-South Pole Telescope Deep Field: Survey Design and IRAC Catalogs
The Spitzer-South Pole Telescope Deep Field (SSDF) is a wide-area survey
using Spitzer's Infrared Array Camera (IRAC) to cover 94 square degrees of
extragalactic sky, making it the largest IRAC survey completed to date outside
the Milky Way midplane. The SSDF is centered at 23:30,-55:00, in a region that
combines observations spanning a broad wavelength range from numerous
facilities. These include millimeter imaging from the South Pole Telescope,
far-infrared observations from Herschel/SPIRE, X-ray observations from the XMM
XXL survey, near-infrared observations from the VISTA Hemisphere Survey, and
radio-wavelength imaging from the Australia Telescope Compact Array, in a
panchromatic project designed to address major outstanding questions
surrounding galaxy clusters and the baryon budget. Here we describe the
Spitzer/IRAC observations of the SSDF, including the survey design,
observations, processing, source extraction, and publicly available data
products. In particular, we present two band-merged catalogs, one for each of
the two warm IRAC selection bands. They contain roughly 5.5 and 3.7 million
distinct sources, the vast majority of which are galaxies, down to the SSDF
5-sigma sensitivity limits of 19.0 and 18.2 Vega mag (7.0 and 9.4 microJy) at
3.6 and 4.5 microns, respectively.Comment: Accepted by ApJS; this version updated to conform to refereed articl
Baryon Content of Massive Galaxy Clusters (0.57 < z < 1.33)
We study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium
(ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with
median redshift and median mass . We
estimate stellar masses for each cluster and BCG using six photometric bands
spanning the range from the ultraviolet to the near-infrared observed with the
VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton
X-ray observations, and the virial masses are derived from the SPT
Sunyaev-Zel'dovich Effect signature.
At the BCG mass constitutes %
of the halo mass for a cluster, and this fraction
falls as . The cluster stellar mass function has a
characteristic mass , and the number of
galaxies per unit mass in clusters is larger than in the field by a factor
. Both results are consistent with measurements on group scales and
at lower redshift. We combine our SPT sample with previously published samples
at low redshift that we correct to a common initial mass function and for
systematic differences in virial masses. We then explore mass and redshift
trends in the stellar fraction (fstar), the ICM fraction (fICM), the cold
baryon fraction (fc) and the baryon fraction (fb). At a pivot mass of
and redshift , the characteristic values are
fstar=%, fICM=%, fc=% and fb=%.
These fractions all vary with cluster mass at high significance, indicating
that higher mass clusters have lower fstar and fc and higher fICM and fb. When
accounting for a 15% systematic virial mass uncertainty, there is no
statistically significant redshift trend at fixed mass in these baryon
fractions.
(abridged)Comment: Accepted for publication in MNRA
SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope
We describe the design of a new polarization sensitive receiver, SPT-3G, for
the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a
factor of ~20 improvement in mapping speed over the current receiver, SPTpol.
The sensitivity of the SPT-3G receiver will enable the advance from statistical
detection of B-mode polarization anisotropy power to high signal-to-noise
measurements of the individual modes, i.e., maps. This will lead to precise
(~0.06 eV) constraints on the sum of neutrino masses with the potential to
directly address the neutrino mass hierarchy. It will allow a separation of the
lensing and inflationary B-mode power spectra, improving constraints on the
amplitude and shape of the primordial signal, either through SPT-3G data alone
or in combination with BICEP-2/KECK, which is observing the same area of sky.
The measurement of small-scale temperature anisotropy will provide new
constraints on the epoch of reionization. Additional science from the SPT-3G
survey will be significantly enhanced by the synergy with the ongoing optical
Dark Energy Survey (DES), including: a 1% constraint on the bias of optical
tracers of large-scale structure, a measurement of the differential Doppler
signal from pairs of galaxy clusters that will test General Relativity on ~200
Mpc scales, and improved cosmological constraints from the abundance of
clusters of galaxies.Comment: 21 pages, 9 figures. To be published in Proceedings of SPIE Volume
9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014,
conference 915
- …
