772 research outputs found
Quantum versus Semiclassical Description of Selftrapping: Anharmonic Effects
Selftrapping has been traditionally studied on the assumption that
quasiparticles interact with harmonic phonons and that this interaction is
linear in the displacement of the phonon. To complement recent semiclassical
studies of anharmonicity and nonlinearity in this context, we present below a
fully quantum mechanical analysis of a two-site system, where the oscillator is
described by a tunably anharmonic potential, with a square well with infinite
walls and the harmonic potential as its extreme limits, and wherein the
interaction is nonlinear in the oscillator displacement. We find that even
highly anharmonic polarons behave similar to their harmonic counterparts in
that selftrapping is preserved for long times in the limit of strong coupling,
and that the polaronic tunneling time scale depends exponentially on the
polaron binding energy. Further, in agreement, with earlier results related to
harmonic polarons, the semiclassical approximation agrees with the full quantum
result in the massive oscillator limit of small oscillator frequency and strong
quasiparticle-oscillator coupling.Comment: 10 pages, 6 figures, to appear in Phys. Rev.
Spin and Conductance-Peak-Spacing Distributions in Large Quantum Dots: A Density Functional Theory Study
We use spin-density-functional theory to study the spacing between
conductance peaks and the ground-state spin of 2D model quantum dots with up to
200 electrons. Distributions for different ranges of electron number are
obtained in both symmetric and asymmetric potentials. The even/odd effect is
pronounced for small symmetric dots but vanishes for large asymmetric ones,
suggesting substantially stronger interaction effects than expected. The
fraction of high-spin ground states is remarkably large.Comment: 4 pages, 3 figure
Impact of Serotonin 2C Receptor Null Mutation on Physiology and Behavior Associated with Nigrostriatal Dopamine Pathway Function
The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT2CR) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT2CRs produces marked alterations in the activity and functional output of this pathway. 5-HT2CR mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of D-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D1 receptor agonist SKF 81297. Differences in DSt D1 or D2 receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT2CRs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt
Resonance Effects in the Nonadiabatic Nonlinear Quantum Dimer
The quantum nonlinear dimer consisting of an electron shuttling between the
two sites and in weak interaction with vibrations, is studied numerically under
the application of a DC electric field. A field-induced resonance phenomenon
between the vibrations and the electronic oscillations is found to influence
the electronic transport greatly. For initially delocalization of the electron,
the resonance has the effect of a dramatic increase in the transport. Nonlinear
frequency mixing is identified as the main mechanism that influences transport.
A characterization of the frequency spectrum is also presented.Comment: 7 pages, 6 figure
Modeling Complex Nuclear Spectra - Regularity versus Chaos
A statistical analysis of the spectrum of two particle - two hole doorway
states in a finite nucleus is performed. On the unperturbed mean-field level
sizable attractive correlations are present in such a spectrum. Including
particle-hole rescattering effects via the residual interaction introduces
repulsive dynamical correlations which generate the fluctuation properties
characteristic of the Gaussian Orthogonal Ensemble. This signals that the
underlying dynamics becomes chaotic. This feature turns out to be independent
of the detailed form of the residual interaction and hence reflects the generic
nature of the fluctuations studied.Comment: 8 pages of text (LATEX), figures (not included, available from the
authors), Feb 9
The α5 Subunit Regulates the Expression and Function of α4*-Containing Neuronal Nicotinic Acetylcholine Receptors in the Ventral-Tegmental Area
Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA
Dynamics of the Hubbard model: a general approach by time dependent variational principle
We describe the quantum dynamics of the Hubbard model at semi-classical
level, by implementing the Time-Dependent Variational Principle (TDVP)
procedure on appropriate macroscopic wavefunctions constructed in terms of
su(2)-coherent states. Within the TDVP procedure, such states turn out to
include a time-dependent quantum phase, part of which can be recognized as
Berry's phase. We derive two new semi-classical model Hamiltonians for
describing the dynamics in the paramagnetic, superconducting, antiferromagnetic
and charge density wave phases and solve the corresponding canonical equations
of motion in various cases. Noticeably, a vortex-like ground state phase
dynamics is found to take place for U>0 away from half filling. Moreover, it
appears that an oscillatory-like ground state dynamics survives at the Fermi
surface at half-filling for any U. The low-energy dynamics is also exactly
solved by separating fast and slow variables. The role of the time-dependent
phase is shown to be particularly interesting in the ordered phases.Comment: ReVTeX file, 38 pages, to appear on Phys. Rev.
Resonance-assisted tunneling in near-integrable systems
Dynamical tunneling between symmetry related invariant tori is studied in the
near-integrable regime. Using the kicked Harper model as an illustration, we
show that the exponential decay of the wave functions in the classically
forbidden region is modified due to coupling processes that are mediated by
classical resonances. This mechanism leads to a substantial deviation of the
splitting between quasi-degenerate eigenvalues from the purely exponential
decrease with 1 / hbar obtained for the integrable system. A simple
semiclassical framework, which takes into account the effect of the resonance
substructure on the KAM tori, allows to quantitatively reproduce the behavior
of the eigenvalue splittings.Comment: 4 pages, 2 figures, gzipped tar file, to appear in Phys. Rev. Lett,
text slightly condensed compared to first versio
Resonance- and Chaos-Assisted Tunneling
We consider dynamical tunneling between two symmetry-related regular islands
that are separated in phase space by a chaotic sea. Such tunneling processes
are dominantly governed by nonlinear resonances, which induce a coupling
mechanism between ``regular'' quantum states within and ``chaotic'' states
outside the islands. By means of a random matrix ansatz for the chaotic part of
the Hamiltonian, one can show that the corresponding coupling matrix element
directly determines the level splitting between the symmetric and the
antisymmetric eigenstates of the pair of islands. We show in detail how this
matrix element can be expressed in terms of elementary classical quantities
that are associated with the resonance. The validity of this theory is
demonstrated with the kicked Harper model.Comment: 25 pages, 5 figure
- …
