416 research outputs found

    Star-forming Clumps in Local Luminous Infrared Galaxies

    Get PDF
    We present HST narrowband near-infrared imaging of Paα and Paβ emission of 48 local luminous infrared galaxies (LIRGs) from the Great Observatories All-Sky LIRG Survey. These data allow us to measure the properties of 810 spatially resolved star-forming regions (59 nuclei and 751 extranuclear clumps) and directly compare their properties to those found in both local and high-redshift star-forming galaxies. We find that in LIRGs the star-forming clumps have radii ranging from ~90 to 900 pc and star formation rates (SFRs) of ~1 × 10⁻³ to 10 M⊙ yr⁻¹, with median values for extranuclear clumps of 170 pc and 0.03 M⊙ yr⁻¹. The detected star-forming clumps are young, with a median stellar age of 8.7 Myr, and have a median stellar mass of 5 × 10⁵ M ⊙. The SFRs span the range of those found in normal local star-forming galaxies to those found in high-redshift star-forming galaxies at z = 1–3. The luminosity function of the LIRG clumps has a flatter slope than found in lower-luminosity, star-forming galaxies, indicating a relative excess of luminous star-forming clumps. In order to predict the possible range of star-forming histories and gas fractions, we compare the star-forming clumps to those measured in the MassiveFIRE high-resolution cosmological simulation. The star-forming clumps in MassiveFIRE cover the same range of SFRs and sizes found in the local LIRGs and have total gas fractions that extend from 10% to 90%. If local LIRGs are similar to these simulated galaxies, we expect that future observations with ALMA will find a large range of gas fractions, and corresponding star formation efficiencies, among the star-forming clumps in LIRGs

    Hints on the gradual re-sizing of the torus in AGN by decomposing IRS/Spitzer spectra

    Full text link
    Several authors have claimed that the less luminous active galactic nuclei (AGN) are not capable of sustaining the dusty torus structure. Thus, a gradual re-sizing of the torus is expected when the AGN luminosity decreases. Our aim is to confront mid-infrared observations of local AGN of different luminosities with this scenario. We decomposed about ~100 IRS/Spitzer spectra of LLAGN and powerful Seyferts in order to decontaminate the torus component from other contributors. We have used the affinity propagation (AP) method to cluster the data into five groups within the sample according to torus contribution to the 5-15 um range (Ctorus) and bolometric luminosity. The AP groups show a progressively higher torus contribution and an increase of the bolometric luminosity, from Group 1 (Ctorus~ 0% and logLbol ~ 41) and up to Group 5 (Ctorus ~80% and log(Lbol) ~44). We have fitted the average spectra of each of the AP groups to clumpy models. The torus is no longer present in Group 1, supporting the disappearance at low-luminosities. We were able to fit the average spectra for the torus component in Groups 3 (Ctorus~ 40% and log(Lbol)~ 42.6), 4 (Ctorus~ 60% and log(Lbol)~ 43.7), and 5 to Clumpy torus models. We did not find a good fitting to Clumpy torus models for Group 2 (Ctorus~ 18% and log(Lbol)~ 42). This might suggest a different configuration and/or composition of the clouds for Group 2, which is consistent with a different gas content seen in Groups 1, 2, and 3, according to the detections of H2 molecular lines. Groups 3, 4, and 5 show a trend to decrease of the width of the torus (which yields to a likely decrease of the geometrical covering factor), although we cannot confirm it with the present data. Finally, Groups 3, 4, and 5 show an increase on the outer radius of the torus for higher luminosities, consistent with a re-sizing of the torus according to the AGN luminosity.Comment: The main body includes 9 figures. Accepted for publication in Ap

    Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    Full text link
    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201

    The Main Results of the Borexino Experiment

    Full text link
    The main physical results on the registration of solar neutrinos and the search for rare processes obtained by the Borexino collaboration to date are presented.Comment: 8 pages, 8 figgures, To be published as Proceedings of the Third Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia, 201

    Borexino calibrations: Hardware, Methods, and Results

    Full text link
    Borexino was the first experiment to detect solar neutrinos in real-time in the sub-MeV region. In order to achieve high precision in the determination of neutrino rates, the detector design includes an internal and an external calibration system. This paper describes both calibration systems and the calibration campaigns that were carried out in the period between 2008 and 2011. We discuss some of the results and show that the calibration procedures preserved the radiopurity of the scintillator. The calibrations provided a detailed understanding of the detector response and led to a significant reduction of the systematic uncertainties in the Borexino measurements

    Recent Borexino results and prospects for the near future

    Full text link
    The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.Comment: 8 pages, 11 figures. To be published as proceedings of Rencontres de Moriond EW 201
    corecore