8,205 research outputs found
Vacuum field correlations and three-body Casimir-Polder potential with one excited atom
The three-body Casimir-Polder potential between one excited and two
ground-state atoms is evaluated. A physical model based on the dressed field
correlations of vacuum fluctuations is used, generalizing a model previously
introduced for three ground-state atoms. Although the three-body potential with
one excited atom is already known in the literature, our model gives new
insights on the nature of non-additive Casimir-Polder forces with one or more
excited atoms.Comment: 9 page
Self-Interacting Electromagnetic Fields and a Classical Discussion on the Stability of the Electric Charge
The present work proposes a discussion on the self-energy of charged
particles in the framework of nonlinear electrodynamics. We seek magnet- ically
stable solutions generated by purely electric charges whose electric and
magnetic fields are computed as solutions to the Born-Infeld equa- tions. The
approach yields rich internal structures that can be described in terms of the
physical fields with explicit analytic solutions. This suggests that the
anomalous field probably originates from a magnetic excitation in the vacuum
due to the presence of the very intense electric field. In addition, the
magnetic contribution has been found to exert a negative pressure on the
charge. This, in turn, balances the electric repulsion, in such a way that the
self-interaction of the field appears as a simple and natural classical
mechanism that is able to account for the stability of the electron charge.Comment: 8 pages, 1 figur
On the physical origins of the negative index of refraction
The physical origins of negative refractive index are derived from a dilute
microscopic model, producing a result that is generalized to the dense
condensed phase limit. In particular, scattering from a thin sheet of electric
and magnetic dipoles driven above resonance is used to form a fundamental
description for negative refraction. Of practical significance, loss and
dispersion are implicit in the microscopic model. While naturally occurring
negative index materials are unavailable, ferromagnetic and ferroelectric
materials provide device design opportunities.Comment: 4 pages, 1 figur
Efficient fluorescence collection from trapped ions with an integrated spherical mirror
Efficient collection of fluorescence from trapped ions is crucial for quantum
optics and quantum computing applications, specifically, for qubit state
detection and in generating single photons for ion-photon and remote ion
entanglement. In a typical setup, only a few per cent of ion fluorescence is
intercepted by the aperture of the imaging optics. We employ a simple metallic
spherical mirror integrated with a linear Paul ion trap to achieve photon
collection efficiency of at least 10% from a single Ba ion. An aspheric
corrector is used to reduce the aberrations caused by the mirror and achieve
high image quality.Comment: 5 pages and 4 figure
Pressure dependence of the melting mechanism at the limit of overheating in Lennard-Jones crystals
We study the pressure dependence of the melting mechanism of a surface free
Lennard-Jones crystal by constant pressure Monte Carlo simulation. The
difference between the overheating temperature() and the
thermodynamical melting point() increase for increasing pressure. When
particles move into the repulsive part of the potential the properties at
change. There is a crossover pressure where the volume jump becomes
pressure-independent. The overheating limit is pre-announced by thermal
excitation of big clusters of defects. The temperature zone where the system is
dominated by these big clusters of defects increases with increasing pressure.
Beyond the crossover pressure we find that excitation of defects and clusters
of them start at the same temperature scale related with .Comment: 6 pages, 5 figures. Accepted for publication in Physical Review
Duality Between Spatial and Angular Shift in Optical Reflection
We report a unified representation of the spatial and angular Goos-Hanchen
and Imbert-Fedorov shifts that occur when a light beam reflects from a plane
interface. We thus reveal the dual nature of spatial and angular shifts in
optical beam reflection. In the Goos-Hanchen case we show theoretically and
experimentally that this unification naturally arises in the context of
reflection from a lossy surface (e.g., a metal).Comment: 4 pages, 3 figure
New Perspective on the Optical Theorem of Classical Electrodynamics
A general proof of the optical theorem (also known as the optical
cross-section theorem) is presented that reveals the intimate connection
between the forward scattering amplitude and the absorption-plus-scattering of
the incident wave within the scatterer. The oscillating electric charges and
currents as well as the electric and magnetic dipoles of the scatterer, driven
by an incident plane-wave, extract energy from the incident beam at a certain
rate. The same oscillators radiate electro-magnetic energy into the far field,
thus giving rise to well-defined scattering amplitudes along various
directions. The essence of the proof presented here is that the extinction
cross-section of an object can be related to its forward scattering amplitude
using the induced oscillations within the object but without an actual
knowledge of the mathematical form assumed by these oscillations.Comment: 7 pages, 1 figure, 12 reference
Planck-scale modifications to Electrodynamics characterized by a space-like symmetry-breaking vector
In the study of Planck-scale ("quantum-gravity induced") violations of
Lorentz symmetry, an important role was played by the deformed-electrodynamics
model introduced by Myers and Pospelov. Its reliance on conventional effective
quantum field theory, and its description of symmetry-violation effects simply
in terms of a four-vector with nonzero component only in the time-direction,
rendered it an ideal target for experimentalists and a natural concept-testing
ground for many theorists. At this point however the experimental limits on the
single Myers-Pospelov parameter, after improving steadily over these past few
years, are "super-Planckian", {\it i.e.} they take the model out of actual
interest from a conventional quantum-gravity perspective. In light of this we
here argue that it may be appropriate to move on to the next level of
complexity, still with vectorial symmetry violation but adopting a generic
four-vector. We also offer a preliminary characterization of the phenomenology
of this more general framework, sufficient to expose a rather significant
increase in complexity with respect to the original Myers-Pospelov setup. Most
of these novel features are linked to the presence of spatial anisotropy, which
is particularly pronounced when the symmetry-breaking vector is space-like, and
they are such that they reduce the bound-setting power of certain types of
observations in astrophysics
The Newtonian Limit of Hermitian Gravity
We construct the gauge invariant potentials of Hermitian Gravity and derive
the linearized equations of motion they obey. A comparison reveals a striking
similarity to the Bardeen potentials of general relativity. We then consider
the response to a point particle source, and discuss in what sense the
solutions of Hermitian Gravity reduce to the Newtonian potentials. In a rather
intriguing way, the Hermitian Gravity solutions exhibit a generalized
reciprocity symmetry originally proposed by Born in the 1930s. Finally, we
consider the trajectories of massive and massless particles under the influence
of a potential. The theory correctly reproduces the Newtonian limit in three
dimensions and the nonrelativistic acceleration equation. However, it differs
from the light deflection calculated in linearized generalrelativity by 25%.
While the specific complexification of general relativity by extension to
Hermitian spaces performed here does not agree with experiment, it does possess
useful properties for quantization and is well-behaved around singularities.
Another form of complex general relativity may very well agree with
experimental data.Comment: The published version in Gen. Rel. Grav. 24 pages, no figure
Epsilons Near Zero limits in the Mie scattering theory
The classical Mie theory - electromagnetic radiation scattering by the
homogeneous spherical particles - is considered in the epsilon near zero limits
separately for the materials of the particles and the surrounding medium. The
maxima of a scattered transverse electrical (TE) field for the surrounding
medium materials with the epsilon near zero limits are revealed. The effective
multipole polarizabilities of the corresponding scattering particles are
investigated. The possibility to achieve magnetic dipole resonance and
accordingly to construct metamaterials with negative refractive index for the
aggregates spherical particles in surrounding medium with the epsilon near zero
limits is considered.Comment: 8 pages, 6 figure
- …
