3,201 research outputs found
Gas Giant Protoplanets Formed by Disk Instability in Binary Star Systems
We present a suite of three dimensional radiative gravitational hydrodynamics
models suggesting that binary stars may be quite capable of forming planetary
systems similar to our own. The new models with binary companions do not employ
any explicit artificial viscosity, and also include the third (vertical)
dimension in the hydrodynamic calculations, allowing for transient phases of
convective cooling. The calculations of the evolution of initially marginally
gravitationally stable disks show that the presence of a binary star companion
may actually help to trigger the formation of dense clumps that could become
giant planets. We also show that in models without binary companions, which
begin their evolution as gravitationally stable disks, the disks evolve to form
dense rings, which then break-up into self-gravitating clumps. These latter
models suggest that the evolution of any self-gravitating disk with sufficient
mass to form gas giant planets is likely to lead to a period of disk
instability, even in the absence of a trigger such as a binary star companion.Comment: 52 pages, 28 figure
The Formation of Fragments at Corotation in Isothermal Protoplanetary Disks
Numerical hydrodynamics simulations have established that disks which are
evolved under the condition of local isothermality will fragment into small
dense clumps due to gravitational instabilities when the Toomre stability
parameter is sufficiently low. Because fragmentation through disk
instability has been suggested as a gas giant planet formation mechanism, it is
important to understand the physics underlying this process as thoroughly as
possible. In this paper, we offer analytic arguments for why, at low ,
fragments are most likely to form first at the corotation radii of growing
spiral modes, and we support these arguments with results from 3D hydrodynamics
simulations.Comment: 21 pages, 1 figur
Spurious harmonic response of multipulse quantum sensing sequences
Multipulse sequences based on Carr-Purcell decoupling are frequently used for
narrow-band signal detection in single spin magnetometry. We have analyzed the
behavior of multipulse sensing sequences under real-world conditions, including
finite pulse durations and the presence of detunings. We find that these
non-idealities introduce harmonics to the filter function, allowing additional
frequencies to pass the filter. In particular, we find that the XY family of
sequences can generate signals at the 2fac, 4fac and 8fac harmonics and their
odd subharmonics, where fac is the ac signal frequency. Consideration of the
harmonic response is especially important for diamond-based nuclear spin
sensing where the NMR frequency is used to identify the nuclear spin species,
as it leads to ambiguities when several isotopes are present.Comment: 6 pages, 7 figure
The Properties of Prestellar Discs in Isolated and Multiple Prestellar Systems
We present high-resolution 3D smoothed particle hydrodynamics simulations of
the formation and evolution of protostellar discs in a turbulent molecular
cloud. Using a piecewise polytropic equation of state, we perform two sets of
simulations. In both cases we find that isolated systems undergo a
fundamentally different evolution than members of binary or multiple systems.
When formed, isolated systems must accrete mass and increase their specific
angular momentum, leading to the formation of massive, extended discs, which
undergo strong gravitational instabilities and are susceptible to disc
fragmentation. Fragments with initial masses of 5.5 M_jup, 7.4 M_jup and 12
M_jup are produced in our simulations. In binaries and small clusters, we
observe that due to competition for material from the parent core, members do
not accrete significant amounts of high specific angular momentum gas relative
to isolated systems. We find that discs in multiple systems are strongly
self-gravitating but that they are stable against fragmentation due to disc
truncation and mass profile steeping by tides, accretion of high specific
angular momentum gas by other members, and angular momentum being redirected
into members' orbits. In general, we expect disc fragmentation to be less
likely in clusters and to be more a feature of isolated systems.Comment: 15 pages, 21 figures. Accepted for publication in MNRA
Quantum sensing with arbitrary frequency resolution
Quantum sensing takes advantage of well controlled quantum systems for
performing measurements with high sensitivity and precision. We have
implemented a concept for quantum sensing with arbitrary frequency resolution,
independent of the qubit probe and limited only by the stability of an external
synchronization clock. Our concept makes use of quantum lock-in detection to
continuously probe a signal of interest. Using the electronic spin of a single
nitrogen vacancy center in diamond, we demonstrate detection of oscillating
magnetic fields with a frequency resolution of 70 uHz over a MHz bandwidth. The
continuous sampling further guarantees an excellent sensitivity, reaching a
signal-to-noise ratio in excess of 10,000:1 for a 170 nT test signal measured
during a one-hour interval. Our technique has applications in magnetic
resonance spectroscopy, quantum simulation, and sensitive signal detection.Comment: Manuscript resubmitted to Science. Includes Supplementary Material
One- and two-dimensional nuclear magnetic resonance spectroscopy with a diamond quantum sensor
We report on Fourier spectroscopy experiments performed with near-surface
nitrogen-vacancy centers in a diamond chip. By detecting the free precession of
nuclear spins rather than applying a multipulse quantum sensing protocol, we
are able to unambiguously identify the NMR species devoid of harmonics. We
further show that by engineering different Hamiltonians during free precession,
the hyperfine coupling parameters as well as the nuclear Larmor frequency can
be selectively measured with high precision (here 5 digits). The protocols can
be combined to demonstrate two-dimensional Fourier spectroscopy. The technique
will be useful for mapping nuclear coordinates in molecules en route to imaging
their atomic structure.Comment: 5 pages, 5 figure
The High Eccentricity of the Planet Around 16 Cyg B
We consider the high eccentricity, 0.66, of the newly discovered planet
around 16 Cyg B, using the fact that the parent star is part of a wide binary.
We show that the high eccentricity of the planet could be the result of tidal
forces exerted on 16 Cyg B and its planet by 16 Cyg A, the distant companion in
the system. By following stellar triple systems with parameters similar to
those of 16 Cyg, we have established that the orbital eccentricity of the
planet could have gone through strong modulation, with an amplitude of 0.8 or
even larger, with typical timescale of tens of millions years. The amplitude of
the planet eccentricity strongly depends on the relative inclination between
the plane of motion of the planet and that of the wide binary 16 Cyg AB. To
account for the present eccentricity of the planet we have to assume that the
angle between the two planes of motion is large, at least 60 deg. We argue that
this assumption is reasonable for wide binaries like 16 Cyg AB.Comment: 2 Figures, Latex, submitted for publication to ApJ
Rate and apparent quantum yield of photodissolution of sedimentary organic matter
Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 1743-1756, doi:10.4319/lo.2012.57.6.1743.We quantified rates of photochemical dissolution (photodissolution) of organic carbon in coastal Louisiana suspended sediments, conducting experiments under well-defined conditions of irradiance and temperature. Optical properties of the suspended sediments were characterized and used in a radiative transfer model to compute irradiances within turbid suspensions. Photodissolution rate increased with temperature (T), with activation energy of 32 ± 7 kJ mol−1, which implicates indirect (non-photochemical) steps in the net reaction. In most samples, dissolved organic carbon (DOC) concentration increased approximately linearly with time over the first 4 h of irradiation under broadband simulated sunlight, after higher rates in the initial hour of irradiation. Four-hour rates ranged from 2.3 µmol DOC m−3 s−1 to 3.2 µmol DOC m−3 s−1, but showed no relation to sample origin within the study area, organic carbon or reducible iron content, or mass-specific absorption coefficient. First-hour rates were higher—from 3.5 µmol DOC m−3 s−1 to 7.8 µmol DOC m−3 s−1—and correlated well with sediment reducible iron (itself often associated with organic matter). The spectral apparent quantum yield (AQY) for photodissolution was computed by fitting DOC photoproduction rates under different spectral irradiance distributions to corresponding rates of light absorption by particles. The photodissolution AQY magnitude is similar to most published dissolved-phase AQY spectra for dissolved inorganic carbon photoproduction, which suggests that in turbid coastal waters where particles dominate light absorption, DOC photoproduction from particles exceeds photooxidation of DOC.We would like to acknowledge funding
support from the National Science Foundation Chemical Oceanography
program (L.M. and M.L.E.), a National Aeronautics and
Space Administration Earth Systems Science Graduate Fellowship
(M.L.E.), and the Office of Naval Research Environmental
Optics program (E.B.)
Fragmentation Instability of Molecular Clouds: Numerical Simulations
We simulate fragmentation and gravitational collapse of cold, magnetized
molecular clouds. We explore the nonlinear development of an instability
mediated by ambipolar diffusion, in which the collapse rate is intermediate to
fast gravitational collapse and slow quasistatic collapse. Initially uniform
stable clouds fragment into elongated clumps with masses largely determined by
the cloud temperature, but substantially larger than the thermal Jeans mass.
The clumps are asymmetric, with significant rotation and vorticity, and lose
magnetic flux as they collapse. The clump shapes, intermediate collapse rates,
and infall profiles may help explain observations not easily fit by
contemporary slow or rapid collapse models.Comment: 25pp, 20 small eps figures, in press ApJ, April 1, 200
- …
