2,704 research outputs found
Interfacial layering in a three-component polymer system
We study theoretically the temporal evolution and the spatial structure of
the interface between two polymer melts involving three different species (A,
A* and B). The first melt is composed of two different polymer species A and A*
which are fairly indifferent to one another (Flory parameter chi_AA* ~ 0). The
second melt is made of a pure polymer B which is strongly attracted to species
A (chi_AB 0). We then show
that, due to these contradictory tendencies, interesting properties arise
during the evolution of the interface after the melts are put into contact: as
diffusion proceeds, the interface structures into several adjacent
"compartments", or layers, of differing chemical compositions, and in addition,
the central mixing layer grows in a very asymmetric fashion. Such unusual
behaviour might lead to interesting mechanical properties, and demonstrates on
a specific case the potential richness of multi-component polymer interfaces
(as compared to conventional two-component interfaces) for various
applications.Comment: Revised version, to appear in Macromolecule
Stripes of Partially Fluorinated Alkyl Chains: Dipolar Langmuir Monolayers
Stripe-like domains of Langmuir monolayers formed by surfactants with
partially fluorinated lipid anchors (F-alkyl lipids) are observed at the
gas-liquid phase coexistence. The average periodicity of the stripes, measured
by fluorescence microscopy, is in the micrometer range, varying between 2 and 8
microns. The observed stripe-like patterns are stabilized due to dipole-dipole
interactions between terminal -CF3 groups. These interactions are particularly
strong as compared with non-fluorinated lipids due to the low dielectric
constant of the surrounding media (air). These long-range dipolar interactions
tend to elongate the domains, in contrast to the line tension that tends to
minimize the length of the domain boundary. This behavior should be compared
with that of the lipid monolayer having alkyl chains, and which form spherical
micro-domains (bubbles) at the gas-liquid coexistence. The measured stripe
periodicity agrees quantitatively with a theoretical model. Moreover, the
reduction in line tension by adding traces (0.1 mol fraction) of cholesterol
results, as expected, in a decrease in the domain periodicity.Comment: 20 pages, 4 fig
Generic morphologies of viscoelastic dewetting fronts
A simple model is put forward which accounts for the occurrence of certain
generic dewetting morphologies in thin liquid coatings. It demonstrates that by
taking into account the elastic properties of the coating, a morphological
phase diagram may be derived which describes the observed structures of
dewetting fronts. It is demonstrated that dewetting morphologies may also serve
to determine nanoscale rheological properties of liquids.Comment: 4 pages, 2 figure
Liquid-liquid coexistence in the phase diagram of a fluid confined in fractal porous materials
Multicanonical ensemble sampling simulations have been performed to calculate
the phase diagram of a Lennard-Jones fluid embedded in a fractal random matrix
generated through diffusion limited cluster aggregation. The study of the
system at increasing size and constant porosity shows that the results are
independent from the matrix realization but not from the size effects. A
gas-liquid transition shifted with respect to bulk is found. On growing the
size of the system on the high density side of the gas-liquid coexistence curve
it appears a second coexistence region between two liquid phases. These two
phases are characterized by a different behaviour of the local density inside
the interconnected porous structure at the same temperature and chemical
potential.Comment: 5 pages, 4 figures. To be published in Europhys. Letter
Helium condensation in aerogel: avalanches and disorder-induced phase transition
We present a detailed numerical study of the elementary condensation events
(avalanches) associated to the adsorption of He in silica aerogels. We use
a coarse-grained lattice-gas description and determine the nonequilibrium
behavior of the adsorbed gas within a local mean-field analysis, neglecting
thermal fluctuations and activated processes. We investigate the statistical
properties of the avalanches, such as their number, size and shape along the
adsorption isotherms as a function of gel porosity, temperature, and chemical
potential. Our calculations predict the existence of a line of critical points
in the temperature-porosity diagram where the avalanche size distribution
displays a power-law behavior and the adsorption isotherms have a universal
scaling form. The estimated critical exponents seem compatible with those of
the field-driven Random Field Ising Model at zero temperature.Comment: 16 pages, 14 figure
Contact line motion for partially wetting fluids
We study the flow close to an advancing contact line in the limit of small
capillary number. To take into account wetting effects, both long and
short-ranged contributions to the disjoining pressure are taken into account.
In front of the contact line, there is a microscopic film corresponding to a
minimum of the interaction potential. We compute the parameters of the contact
line solution relevant to the matching to a macroscopic problem, for example a
spreading droplet. The result closely resembles previous results obtained with
a slip model
Dewetting of Glassy Polymer Films
Dynamics and morphology of hole growth in a film of power hardening
viscoplastic solid (yield stress ~ [strain-rate]^n) is investigated. At
short-times the growth is exponential and depends on the initial hole size. At
long-times, for n > 1/3, the growth is exponential with a different exponent.
However, for n < 1/3, the hole growth slows; the hole radius approaches an
asymptotic value as time tends to infinity. The rim shape is highly asymmetric,
the height of which has a power law dependence on the hole radius (exponent
close to unity for 0.25 < n < 0.4). The above results explain recent intriguing
experiments of Reiter, Phys. Rev. Lett, 87, 186101 (2001).Comment: 4 pages, 5 figures, RevTe
A diaphragmatic electrical activity-based optimization strategy during pressure support ventilation improves synchronization but does not impact work of breathing.
Poor patient-ventilator synchronization is often observed during pressure support ventilation (PSV) and has been associated with prolonged duration of mechanical ventilation and poor outcome. Diaphragmatic electrical activity (Eadi) recorded using specialized nasogastric tubes is a surrogate of respiratory brain stem output. This study aimed at testing whether adapting ventilator settings during PSV using a protocolized Eadi-based optimization strategy, or Eadi-triggered and -cycled assisted pressure ventilation (or PSVN) could (1) improve patient-ventilator interaction and (2) reduce or normalize patient respiratory effort as estimated by the work of breathing (WOB) and the pressure time product (PTP).
This was a prospective cross-over study. Patients with a known chronic pulmonary obstructive or restrictive disease, asynchronies or suspected intrinsic positive end-expiratory pressure (PEEP) who were ventilated using PSV were enrolled in the study. Four different ventilator settings were sequentially applied for 15 minutes (step 1: baseline PSV as set by the clinician, step 2: Eadi-optimized PSV to adjust PS level, inspiratory trigger, and cycling settings, step 3: step 2 + PEEP adjustment, step 4: PSVN). The same settings as step 3 were applied again after step 4 to rule out a potential effect of time. Breathing pattern, trigger delay (Td), inspiratory time in excess (Tiex), pressure-time product (PTP), and work of breathing (WOB) were measured at the end of each step.
Eleven patients were enrolled in the study. Eadi-optimized PSV reduced Td without altering Tiex in comparison with baseline PSV. PSVN reduced Td and Tiex in comparison with baseline and Eadi-optimized PSV. Respiratory pattern did not change during the four steps. The improvement in patient-ventilator interaction did not lead to changes in WOB or PTP.
Eadi-optimized PSV allows improving patient ventilator interaction but does not alter patient effort in patients with mild asynchrony.
Clinicaltrials.gov identifier: NCT 02067403 . Registered 7 February 2014
Probing structural relaxation in complex fluids by critical fluctuations
Complex fluids, such as polymer solutions and blends, colloids and gels, are
of growing interest in fundamental and applied soft-condensed-matter science. A
common feature of all such systems is the presence of a mesoscopic structural
length scale intermediate between atomic and macroscopic scales. This
mesoscopic structure of complex fluids is often fragile and sensitive to
external perturbations. Complex fluids are frequently viscoelastic (showing a
combination of viscous and elastic behaviour) with their dynamic response
depending on the time and length scales. Recently, non-invasive methods to
infer the rheological response of complex fluids have gained popularity through
the technique of microrheology, where the diffusion of probe spheres in a
viscoelastic fluid is monitored with the aid of light scattering or microscopy.
Here we propose an alternative to traditional microrheology that does not
require doping of probe particles in the fluid (which can sometimes drastically
alter the molecular environment). Instead, our proposed method makes use of the
phenomenon of "avoided crossing" between modes associated with the structural
relaxation and critical fluctuations that are spontaneously generated in the
system.Comment: 4 pages, 4 figure
- …
