8,052 research outputs found
Results of the users' requirements survey
The objectives of the High Resolution, High Frame Rate Video Technology (HHVT) Users' Requirements Survey were the following: (1) Document the requirements of potential users of the HHVT system; (2) Establish a data base relating key video parameters to HHVT users; (3) Guide the development of a high resolution, high frame rate video system offering high data storage capacity and high data transmission rates; (4) Allow users to compare their requirements to those of other users and to the state-of-the-art technology; and (5) Allow users to reassess, if necessary, their requirements in the light of existing and near-term technology. The results of the Users' Requirements Survey are presented. The diversity of these requirements indicates a need for developing a video system with great flexibility
Alopecia areata: a multifactorial autoimmune condition
Alopecia areata is an autoimmune disease that results in non-scarring hair loss, and it is clinically characterised by small patches of baldness on the scalp and/or around the body. It can later progress to total loss of scalp hair (Alopecia totalis) and/or total loss of all body hair (Alopecia universalis). The rapid rate of hair loss and disfiguration caused by the condition causes anxiety on patients and increases the risks of developing psychological and psychiatric complications. Hair loss in alopecia areata is caused by lymphocytic infiltrations around the hair follicles and IFN-γ. IgG antibodies against the hair follicle cells are also found in alopecia areata sufferers. In addition, the disease coexists with other autoimmune disorders and can come secondary to infections or inflammation. However, despite the growing knowledge about alopecia areata, the aetiology and pathophysiology of disease are not well defined. In this review we discuss various genetic and environmental factors that cause autoimmunity and describe the immune mechanisms that lead to hair loss in alopecia areata patients
Enrichment of innate lymphoid cell populations in gingival tissue
Innate lymphoid cells (ILCs) are a population of lymphocytes that act as the first line of immunologic defense at mucosal surfaces. The ILC family in the skin, lungs, and gastrointestinal tissues has been investigated, and there are reports of individual subsets of ILCs in the oral tissues. We sought to investigate the whole ILC population (group 1, 2, and 3 subsets) in the murine gingivae and the lymph nodes draining the oral cavity. We show that ILCs made up a greater proportion of the whole CD45+ lymphocyte population in the murine gingivae (0.356% ± 0.039%) as compared with the proportion of ILCs in the draining lymph nodes (0.158% ± 0.005%). Cytokine profiling of the ILC populations demonstrated different proportions of ILC subsets in the murine gingivae versus the regional lymph nodes. The majority of ILCs in the draining lymph nodes expressed IL-5, whereas there were equal proportions of IFN-γ- and IL-5 expressing ILCs in the oral mucosa. The percentage of IL-17+ ILCs was comparable between the murine gingivae and the oral draining lymph nodes. These data suggest an enrichment of ILCs in the murine gingivae, and these ILCs reflect a cytokine profile discrepant to that of the local draining lymph nodes. These studies indicate diversity and enrichment of ILCs at the oral mucosal surface. The function of ILCs in the oral cavity remains to be determined; here, we provide a premise of ILC populations that merits future consideration in investigations of mouse models and human tissues
Absolute calibration of the LOPES antenna system
Radio emission in extensive air showers arises from an interaction with the
geomagnetic field and is subject of theoretical studies. This radio emission
has advantages for the detection of high energy cosmic rays compared to
secondary particle or fluorescence measurement methods. Radio antennas like the
LOPES30 antenna system are suited to investigate this emission process by
detecting the radio pulses. The characteristic observable parameters like
electric field strength and pulse length require a calibration which was done
with a reference radio source resulting in an amplification factor representing
the system behavior in the environment of the KASCADE-Grande experiment.
Knowing the amplification factor and the gain of the LOPES antennas LOPES30 is
calibrated absolutely for systematic analyses of the radio emission.Comment: 5 pages, Proceedings of International Workshop on Acoustic and Radio
EeV Neutrino detection Activities: ARENA, May 17-19, 2005, DESY Zeuthe
Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells
The gingival epithelium is a physical and immunological barrier to the microbiota of the oral cavity, which interact through soluble mediators with the immune cells that patrol the tissue at the gingival epithelium. We sought to develop a three-dimensional gingivae-biofilm interface model using a commercially available gingival epithelium to study the tissue inflammatory response to oral biofilms associated with “health”, “gingivitis” and “periodontitis”. These biofilms were developed by sequential addition of microorganisms to mimic the formation of supra- and sub-gingival plaque in vivo. Secondly, to mimic the interactions between gingival epithelium and immune cells in vivo, we integrated peripheral blood mononuclear cells and CD14+ monocytes into our three-dimensional model and were able to assess the inflammatory response in the immune cells cultured with and without gingival epithelium. We describe a differential inflammatory response in immune cells cultured with epithelial tissue, and more so following incubation with epithelium stimulated by “gingivitis-associated” biofilm. These results suggest that gingival epithelium-derived soluble mediators may control the inflammatory status of immune cells in vitro, and therefore targeting of the epithelial response may offer novel therapies. This multi-cellular interface model, both of microbial and host origin, offers a robust in vitro platform to investigate host-pathogens at the epithelial surface
Confined magnetic guiding orbit states
We show how snake-orbit states which run along a magnetic edge can be
confined electrically. We consider a two-dimensional electron gas (2DEG)
confined into a quantum wire, subjected to a strong perpendicular and steplike
magnetic field . Close to this magnetic step new, spatially confined
bound states arise as a result of the lateral confinement and the magnetic
field step. The number of states, with energy below the first Landau level,
increases as becomes stronger or as the wire width becomes larger. These
bound states can be understood as an interference between two
counter-propagating one-dimensional snake-orbit states.Comment: 4 pages, 4 figure
Full Scale Proton Beam Impact Testing of new CERN Collimators and Validation of a Numerical Approach for Future Operation
New collimators are being produced at CERN in the framework of a large
particle accelerator upgrade project to protect beam lines against stray
particles. Their movable jaws hold low density absorbers with tight geometric
requirements, while being able to withstand direct proton beam impacts. Such
events induce considerable thermo-mechanical loads, leading to complex
structural responses, which make the numerical analysis challenging. Hence, an
experiment has been developed to validate the jaw design under representative
conditions and to acquire online results to enhance the numerical models. Two
jaws have been impacted by high-intensity proton beams in a dedicated facility
at CERN and have recreated the worst possible scenario in future operation. The
analysis of online results coupled to post-irradiation examinations have
demonstrated that the jaw response remains in the elastic domain. However, they
have also highlighted how sensitive the jaw geometry is to its mounting support
inside the collimator. Proton beam impacts, as well as handling activities, may
alter the jaw flatness tolerance value by 70 m, whereas the
flatness tolerance requirement is 200 m. In spite of having validated
the jaw design for this application, the study points out numerical limitations
caused by the difficulties in describing complex geometries and boundary
conditions with such unprecedented requirements.Comment: 22 pages, 17 figures, Prepared for submission to JINS
Gravity from self-interaction redux
I correct some recent misunderstandings about, and amplify some details of,
an old explicit non-geometrical derivation of GR.Comment: Final, amplified, published version; GRG (2009
- …
