730 research outputs found

    Transport of Cytoplasmically Synthesized Proteins into the Mitochondria in a Cell Free System from Neurospora crassa

    Get PDF
    Synthesis and transport of mitochondrial proteins were followed in a cell-free homogenate of Neurospora crassa in which mitochondrial translation was inhibited. Proteins synthesized on cytoplasmic ribosomes are transferred into the mitochondrial fraction. The relative amounts of proteins which are transferred in vitro are comparable to those transferred in whole cells. Cycloheximide and puromycin inhibit the synthesis of mitochondrial proteins but not their transfer into mitochondria. The transfer of immunoprecipitable mitochondrial proteins was demonstrated for matrix proteins, carboxyatractyloside-binding protein and cytochrome c. Import of proteins into mitochondria exhibits a degree of specificity. The transport mechanism differentiates between newly synthesized proteins and preexistent mitochondrial proteins, at least in the case of matrix proteins. In the cell-free homogenate membrane-bound ribosomes are more active in the synthesis of mitochondrial proteins than are free ribosomes. The finished translation products appear to be released from the membrane-bound ribosomes into the cytosol rather than into the membrane vesicles. The results suggest that the transport of cytoplasmically synthesized mitochondrial proteins is essentially independent of cytoplasmic translation; that cytoplasmically synthesized mitochondrial proteins exist in an extramitochondrial pool prior to import; that the site of this pool is the cytosol for at least some of the mitochondrial proteins; and that the precursors in the extramitochondrial pool differ in structure or conformation from the functional proteins in the mitochondria

    Recent Efforts in the Computation of String Couplings:

    Get PDF
    We review recent advances towards the computation of string couplings. Duality symmetry, mirror symmetry, Picard-Fuchs equations, etc. are some of the tools.Comment: Talk hold at the `International Conference on Modern Problems in Quantum Field Theorie, Strings and Quantum Gravity', Kiev, June 1992, 18 page

    Bianchi Type I Cosmology in N=2, D=5 Supergravity

    Get PDF
    The dynamics and evolution of Bianchi type I space-times is considered in the framework of the four-dimensional truncation of a reduced theory obtained from the N=2,D=5 supergravity. The general solution of the gravitational field equations can be represented in an exact parametric form. All solutions have a singular behavior at the initial/final moment, except when the space-time geometry reduces to the isotropic flat case. Generically the obtained cosmological models describe an anisotropic, expanding or collapsing, singular Universe with a non-inflationary evolution for all times.Comment: revised version to appear in PR

    Dynamical Topology Change in M Theory

    Get PDF
    We study topology change in M theory compactifications on Calabi-Yau three-folds in the presence of G flux (the four form field strength). In particular, we discuss vacuum solutions in strongly coupled heterotic string theory in which the topology change is inevitable within a single spacetime background. For rather generic choices of initial conditions, the field equations drive the Kahler moduli outside the classical moduli space of a Calabi-Yau manifold. Consistency of the solution suggests that degenerate flop curves - just as wrapped M theory fivebranes - carry magnetic charges under the four form field strength.Comment: 21 pages, LaTeX, 2 figures (eps

    Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Get PDF
    Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U) in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR) and two Pebble-Bed Accelerator Driven Systems (ADSs) was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.Received: 09 February 2015; Revised: 12 May 2015; Accepted: 20 May 201

    Mirror Symmetry, Mirror Map and Applications to Calabi-Yau Hypersurfaces

    Full text link
    Mirror Symmetry, Picard-Fuchs equations and instanton corrected Yukawa couplings are discussed within the framework of toric geometry. It allows to establish mirror symmetry of Calabi-Yau spaces for which the mirror manifold had been unavailable in previous constructions. Mirror maps and Yukawa couplings are explicitly given for several examples with two and three moduli.Comment: 59 pages. Some changes in the references, a few minor points have been clarifie

    Observed Effect of Magnetic Fields on the Propagation of Magnetoacoustic Waves in the Lower Solar Atmosphere

    Full text link
    We study Hinode/SOT-FG observations of intensity fluctuations in Ca II H-line and G-band image sequences and their relation to simultaneous and co-spatial magnetic field measurements. We explore the G-band and H-line intensity oscillation spectra both separately and comparatively via their relative phase differences, time delays and cross-coherences. In the non-magnetic situations, both sets of fluctuations show strong oscillatory power in the 3 - 7 mHz band centered at 4.5 mHz, but this is suppressed as magnetic field increases. A relative phase analysis gives a time delay of H-line after G-band of 20\pm1 s in non-magnetic situations implying a mean effective height difference of 140 km. The maximum coherence is at 4 - 7 mHz. Under strong magnetic influence the measured delay time shrinks to 11 s with the peak coherence near 4 mHz. A second coherence maximum appears between 7.5 - 10 mHz. Investigation of the locations of this doubled-frequency coherence locates it in diffuse rings outside photospheric magnetic structures. Some possible interpretations of these results are offered.Comment: 19 pages, 6 figure

    Mirror Manifolds in Higher Dimension

    Full text link
    We describe mirror manifolds in dimensions different from the familiar case of complex threefolds. We emphasize the simplifying features of dimension three and supply more robust methods that do not rely on such special characteristics and hence naturally generalize to other dimensions. The moduli spaces for Calabi--Yau dd-folds are somewhat different from the ``special K\"ahler manifolds'' which had occurred for d=3d=3, and we indicate the new geometrical structures which arise. We formulate and apply procedures which allow for the construction of mirror maps and the calculation of order-by-order instanton corrections to Yukawa couplings. Mathematically, these corrections are expected to correspond to calculating Chern classes of various parameter spaces (Hilbert schemes) for rational curves on Calabi--Yau manifolds. Our results agree with those obtained by more traditional mathematical methods in the limited number of cases for which the latter analysis can be carried out. Finally, we make explicit some striking relations between instanton corrections for various Yukawa couplings, derived from the associativity of the operator product algebra.Comment: 44 pages plus 3 tables using harvma

    Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing

    Full text link
    Intermittent magnetohydrodynamical turbulence is most likely at work in the magnetized solar atmosphere. As a result, an array of scaling and multi-scaling image-processing techniques can be used to measure the expected self-organization of solar magnetic fields. While these techniques advance our understanding of the physical system at work, it is unclear whether they can be used to predict solar eruptions, thus obtaining a practical significance for space weather. We address part of this problem by focusing on solar active regions and by investigating the usefulness of scaling and multi-scaling image-processing techniques in solar flare prediction. Since solar flares exhibit spatial and temporal intermittency, we suggest that they are the products of instabilities subject to a critical threshold in a turbulent magnetic configuration. The identification of this threshold in scaling and multi-scaling spectra would then contribute meaningfully to the prediction of solar flares. We find that the fractal dimension of solar magnetic fields and their multi-fractal spectrum of generalized correlation dimensions do not have significant predictive ability. The respective multi-fractal structure functions and their inertial-range scaling exponents, however, probably provide some statistical distinguishing features between flaring and non-flaring active regions. More importantly, the temporal evolution of the above scaling exponents in flaring active regions probably shows a distinct behavior starting a few hours prior to a flare and therefore this temporal behavior may be practically useful in flare prediction. The results of this study need to be validated by more comprehensive works over a large number of solar active regions.Comment: 26 pages, 7 figure
    corecore