1,070 research outputs found

    A formula for the First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces

    Get PDF
    Let G/KG/K be a simply connected spin compact inner irreducible symmetric space, endowed with the metric induced by the Killing form of GG sign-changed. We give a formula for the square of the first eigenvalue of the Dirac operator in terms of a root system of GG. As an example of application, we give the list of the first eigenvalues for the spin compact irreducible symmetric spaces endowed with a quaternion-K\"{a}hler structure

    Toeplitz operators on symplectic manifolds

    Full text link
    We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established.Comment: 40 page

    Legendrian Distributions with Applications to Poincar\'e Series

    Full text link
    Let XX be a compact Kahler manifold and LXL\to X a quantizing holomorphic Hermitian line bundle. To immersed Lagrangian submanifolds Λ\Lambda of XX satisfying a Bohr-Sommerfeld condition we associate sequences {Λ,k}k=1\{ |\Lambda, k\rangle \}_{k=1}^\infty, where k\forall k Λ,k|\Lambda, k\rangle is a holomorphic section of LkL^{\otimes k}. The terms in each sequence concentrate on Λ\Lambda, and a sequence itself has a symbol which is a half-form, σ\sigma, on Λ\Lambda. We prove estimates, as kk\to\infty, of the norm squares Λ,kΛ,k\langle \Lambda, k|\Lambda, k\rangle in terms of Λσσ\int_\Lambda \sigma\overline{\sigma}. More generally, we show that if Λ1\Lambda_1 and Λ2\Lambda_2 are two Bohr-Sommerfeld Lagrangian submanifolds intersecting cleanly, the inner products Λ1,kΛ2,k\langle\Lambda_1, k|\Lambda_2, k\rangle have an asymptotic expansion as kk\to\infty, the leading coefficient being an integral over the intersection Λ1Λ2\Lambda_1\cap\Lambda_2. Our construction is a quantization scheme of Bohr-Sommerfeld Lagrangian submanifolds of XX. We prove that the Poincar\'e series on hyperbolic surfaces are a particular case, and therefore obtain estimates of their norms and inner products.Comment: 41 pages, LaTe

    An explicit formula for the Berezin star product

    Full text link
    We prove an explicit formula of the Berezin star product on Kaehler manifolds. The formula is expressed as a summation over certain strongly connected digraphs. The proof relies on a combinatorial interpretation of Englis' work on the asymptotic expansion of the Laplace integral.Comment: 19 pages, to appear in Lett. Math. Phy

    Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level

    Full text link
    We compare the charge transport characteristics of heavy doped p- and n-Si-alkyl chain/Hg junctions. Photoelectron spectroscopy (UPS, IPES and XPS) results for the molecule-Si band alignment at equilibrium show the Fermi level to LUMO energy difference to be much smaller than the corresponding Fermi level to HOMO one. This result supports the conclusion we reach, based on negative differential resistance in an analogous semiconductor-inorganic insulator/metal junction, that for both p- and n-type junctions the energy difference between the Fermi level and LUMO, i.e., electron tunneling, controls charge transport. The Fermi level-LUMO energy difference, experimentally determined by IPES, agrees with the non-resonant tunneling barrier height deduced from the exponential length-attenuation of the current

    A holomorphic representation of the Jacobi algebra

    Full text link
    A representation of the Jacobi algebra h1su(1,1)\mathfrak{h}_1\rtimes \mathfrak{su}(1,1) by first order differential operators with polynomial coefficients on the manifold C×D1\mathbb{C}\times \mathcal{D}_1 is presented. The Hilbert space of holomorphic functions on which the holomorphic first order differential operators with polynomials coefficients act is constructed.Comment: 34 pages, corrected typos in accord with the printed version and the Errata in Rev. Math. Phys. Vol. 24, No. 10 (2012) 1292001 (2 pages) DOI: 10.1142/S0129055X12920018, references update

    The Chevreton Tensor and Einstein-Maxwell Spacetimes Conformal to Einstein Spaces

    Get PDF
    In this paper we characterize the source-free Einstein-Maxwell spacetimes which have a trace-free Chevreton tensor. We show that this is equivalent to the Chevreton tensor being of pure-radiation type and that it restricts the spacetimes to Petrov types \textbf{N} or \textbf{O}. We prove that the trace of the Chevreton tensor is related to the Bach tensor and use this to find all Einstein-Maxwell spacetimes with a zero cosmological constant that have a vanishing Bach tensor. Among these spacetimes we then look for those which are conformal to Einstein spaces. We find that the electromagnetic field and the Weyl tensor must be aligned, and in the case that the electromagnetic field is null, the spacetime must be conformally Ricci-flat and all such solutions are known. In the non-null case, since the general solution is not known on closed form, we settle with giving the integrability conditions in the general case, but we do give new explicit examples of Einstein-Maxwell spacetimes that are conformal to Einstein spaces, and we also find examples where the vanishing of the Bach tensor does not imply that the spacetime is conformal to a CC-space. The non-aligned Einstein-Maxwell spacetimes with vanishing Bach tensor are conformally CC-spaces, but none of them are conformal to Einstein spaces.Comment: 22 pages. Corrected equation (12

    Notes on beta-deformations of the pure spinor superstring in AdS(5) x S(5)

    Full text link
    We study the properties of the vertex operator for the beta-deformation of the superstring in AdS(5) x S(5) in the pure spinor formalism. We discuss the action of supersymmetry on the infinitesimal beta-deformation, the application of the homological perturbation theory, and the relation between the worldsheet description and the spacetime supergravity description.Comment: LaTeX, 74pp

    The Spectrum of the Dirac Operator on Coset Spaces with Homogeneous Gauge Fields

    Get PDF
    The spectrum and degeneracies of the Dirac operator are analysed on compact coset spaces when there is a non-zero homogeneous background gauge field which is compatible with the symmetries of the space, in particular when the gauge field is derived from the spin-connection. It is shown how the degeneracy of the lowest Landau level in the recently proposed higher dimensional quantum Hall effect is related to the Atiyah-Singer index theorem for the Dirac operator on a compact coset space.Comment: 25 pages, typeset in LaTeX, uses youngtab.st

    General approach to the study of vacuum space-times with an isometry

    Get PDF
    In vacuum space-times the exterior derivative of a Killing vector field is a 2-form (named here as the Papapetrou field) that satisfies Maxwell's equations without electromagnetic sources. In this paper, using the algebraic structure of the Papapetrou field, we will set up a new formalism for the study of vacuum space-times with an isometry, which is suitable to investigate the connections between the isometry and the Petrov type of the space-time. This approach has some advantages, among them, it leads to a new classification of these space-times and the integrability conditions provide expressions that determine completely the Weyl curvature. These facts make the formalism useful for application to any problem or situation with an isometry and requiring the knowledge of the curvature.Comment: 24 pages, LaTeX2e, IOP style. To appear in Classical and Quantum Gravit
    corecore