310 research outputs found
The Tuning System for the HIE-ISOLDE High-Beta Quarter Wave Resonator
A new linac using superconducting quarter-wave resonators (QWR) is under
construction at CERN in the framework of the HIE-ISOLDE project. The QWRs are
made of niobium sputtered on a bulk copper substrate. The working frequency at
4.5 K is 101.28 MHz and they will provide 6 MV/m accelerating gradient on the
beam axis with a total maximum power dissipation of 10 W on cavity walls. A
tuning system is required in order to both minimize the forward power variation
in beam operation and to compensate the unavoidable uncertainties in the
frequency shift during the cool-down process. The tuning system has to fulfil a
complex combination of RF, structural and thermal requirements. The paper
presents the functional specifications and details the tuning system RF and
mechanical design and simulations. The results of the tests performed on a
prototype system are discussed and the industrialization strategy is presented
in view of final production.Comment: 5 pages, The 16th International Conference on RF Superconductivity
(SRF2013), Paris, France, Sep 23-27, 201
Role of surface microgeometries on electron escape probability and secondary electron yield of metal surfaces
The influence of microgeometries on the Secondary Electron Yield (SEY) of surfaces is investigated. Laser written structures of different aspect ratio (height to width) on a copper surface tuned the SEY of the surface and reduced its value to less than unity. The aspect ratio of microstructures was methodically controlled by varying the laser parameters. The results obtained corroborate a recent theoretical model of SEY reduction as a function of the aspect ratio of microstructures. Nanostructures - which are formed inside the microstructures during the interaction with the laser beam - provided further reduction in SEY comparable to that obtained in the simulation of structures which were coated with an absorptive layer suppressing secondary electron emission
Status of the HIE-ISOLDE project at CERN
The HIE-ISOLDE project represents a major upgrade of the ISOLDE nuclear
facility with a mandate to significantly improve the quality and increase the
intensity and energy of radioactive nuclear beams produced at CERN. The project
will expand the experimental nuclear physics programme at ISOLDE by focusing on
an upgrade of the existing Radioactive ion beam EXperiment (REX) linac with a
40 MV superconducting linac comprising thirty-two niobium-on-copper
sputter-coated quarter-wave resonators housed in six cryomodules. The new linac
will raise the energy of post-accelerated beams from 3 MeV/u to over 10 MeV/u.
The upgrade will be staged to first deliver beam energies of 5.5 MeV/u using
two high- cryomodules placed downstream of REX, before the energy
variable section of the existing linac is replaced with two low-
cryomodules and two additional high- cryomodules are installed to attain
over 10 MeV/u with full energy variability above 0.45 MeV/u. An overview of the
project including a status summary of the different R&D activities and the
schedule will outlined.Comment: 7 pages, 12 figures, submitted to the Heavy Ion Accelerator
Technology conference (HIAT) 2012, in Chicag
Weak formulation for singular diffusion equation with dynamic boundary condition
In this paper, we propose a weak formulation of the singular diffusion
equation subject to the dynamic boundary condition. The weak formulation is
based on a reformulation method by an evolution equation including the
subdifferential of a governing convex energy. Under suitable assumptions, the
principal results of this study are stated in forms of Main Theorems A and B,
which are respectively to verify: the adequacy of the weak formulation; the
common property between the weak solutions and those in regular problems of
standard PDEs.Comment: 23 page
The HIE-ISOLDE Superconducting Cavities: Surface Treatment and Niobium Thin Film Coating
CERN has designed and prepared new facilities for the surface treatment and niobium sputter coating of the HIE-ISOLDE superconducting cavities. We describe here the design choices, as well as the results of the first surface treatments and test coatings
Design Aspects of the RF Contacts for the LHC Beam Vacuum Interconnects
The LHC requires a very low longitudinal and transverse beam coupling impedance, in particular at low frequencies. This implies an admissible DC contact resistance of less than 0.1 m for the RF contacts inside the vacuum bellows which must carry the image current (up to 50 A peak) of the beam at each vacuum chamber interconnect. Technological aspects, measurement methods and test results are presented for the contacts which will be used in the LHC. The modified mechanical design and the justifications for specific choices will be discusse
ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H−1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation
Digital cultural heritage imaging via osmosis filtering
In Cultural Heritage (CH) imaging, data acquired within different spectral regions are often used to inspect surface and sub-surface features. Due to the experimental setup, these images may suffer from intensity inhomogeneities, which may prevent conservators from distinguishing the physical properties of the object under restoration. Furthermore, in multi-modal imaging, the transfer of information between one modality to another is often used to integrate image contents. In this paper, we apply the image osmosis model proposed in [4, 10, 12] to solve correct these problems arising when diagnostic CH imaging techniques based on reflectance, emission and fluorescence mode in the optical and thermal range are used. For an efficient computation, we use stable operator splitting techniques to solve the discretised model. We test our methods on real artwork datasets: the thermal measurements of the mural painting “Monocromo” by Leonardo Da Vinci, the UV-VIS-IR imaging of an ancient Russian icon and the Archimedes Palimpsest dataset
Influence of bunch exposure on anthocyanins extractability from grapes skins (Vitis vinifera L.)
In relation to bunch exposure to solar irradiance (sun exposed vs. leaf shaded conditions), anthocyanin ripening and extractability were studied in two grape cultivars ('Croatina' and 'Pinot Noir') coming from three different vineyards in Northern Italy. Analysis of anthocyanin content were carried out by HPLC and spectrophotometry, and a simulated maceration process was developed. Pigments extraction occurred mainly in the first few hours of the maceration process. Anthocyanins with disubstituted B-ring showed a faster extractability than the trisubsituted ones. Bunch exposure to sunlight seemed to be important for pigment extractability timing in winemaking, showing a delay in pigments release. This delay was only partially explained by the different pigments profile, with higher percentage of disubstituted compounds in shaded berries, because all the molecules indicated a similar extraction trend during maceration.
Residual Whiteness Principle for Automatic Parameter Selection in ℓ2 - ℓ2 Image Super-Resolution Problems
We propose an automatic parameter selection strategy for variational image super-resolution of blurred and down-sampled images corrupted by additive white Gaussian noise (AWGN) with unknown standard deviation. By exploiting particular properties of the operators describing the problem in the frequency domain, our strategy selects the optimal parameter as the one optimising a suitable residual whiteness measure. Numerical tests show the effectiveness of the proposed strategy for generalised ℓ2 - ℓ2 Tikhonov problems
- …
