2,374 research outputs found
Decoherence - Fluctuation Relation and Measurement Noise
We discuss fluctuations in the measurement process and how these fluctuations
are related to the dissipational parameter characterising quantum damping or
decoherence. On the example of the measuring current of the variable-barrier or
QPC problem we show there is an extra noise or fluctuation connected with the
possible different outcomes of a measurement. This noise has an enhanced short
time component which could be interpreted as due to ``telegraph noise'' or
``wavefunction collapses''. Furthermore the parameter giving the the strength
of this noise is related to the parameter giving the rate of damping or
decoherence.Comment: 6 pages, no figures, for Okun Festschrift, Physics Report
Optimal energy quanta to current conversion
We present a microscopic discussion of a nano-sized structure which uses the
quantization of energy levels and the physics of single charge Coulomb
interaction to achieve an optimal conversion of heat flow to directed current.
In our structure the quantization of energy levels and the Coulomb blockade
lead to the transfer of quantized packets of energy from a hot source into an
electric conductor to which it is capacitively coupled. The fluctuation
generated transfer of a single energy quantum translates into the directed
motion of a single electron. Thus in our structure the ratio of the charge
current to the heat current is determined by the ratio of the charge quantum to
the energy quantum. An important novel aspect of our approach is that the
direction of energy flow and the direction of electron motion are decoupled.Comment: 9 pages, 6 figure
MiR-766 induces p53 accumulation and G2/M arrest by directly targeting MDM4
p53, a transcription factor that participates in multiple cellular functions, is considered the most important tumor suppressor. Previous evidence suggests that post-transcriptional deregulation of p53 by microRNAs contributes to tumorigenesis, tumor progression and therapeutic resistance. In the present study, we found that the microRNA miR-766 was aberrantly expressed in breast cancer, and that over-expression of miR-766 caused accumulation of wild-type p53 protein in multiple cancer cell lines. Supporting its role in the p53 signalling pathway, miR-766 decreased cell proliferation and colony formation in several cancer cell lines, and cell cycle analyses revealed that miR-766 causes G2 arrest. At a mechanistic level, we demonstrate that miR-766 enhances p53 signalling by directly targeting MDM4, an oncogene and negative regulator of p53. Analysis of clinical genomic data from multiple cancer types supports the relevance of miR-766 in p53 signalling. Collectively, our study demonstrates that miR-766 can function as a novel tumor suppressor by enhancing p53 signalling.Qingqing Wang, Luke A. Selth and David F. Calle
Proof of Rounding by Quenched Disorder of First Order Transitions in Low-Dimensional Quantum Systems
We prove that for quantum lattice systems in d<=2 dimensions the addition of
quenched disorder rounds any first order phase transition in the corresponding
conjugate order parameter, both at positive temperatures and at T=0. For
systems with continuous symmetry the statement extends up to d<=4 dimensions.
This establishes for quantum systems the existence of the Imry-Ma phenomenon
which for classical systems was proven by Aizenman and Wehr. The extension of
the proof to quantum systems is achieved by carrying out the analysis at the
level of thermodynamic quantities rather than equilibrium states.Comment: This article presents the detailed derivation of results which were
announced in Phys. Rev. Lett. 103 (2009) 197201 (arXiv:0907.2419). v3
incorporates many corrections and improvements resulting from referee
comment
Quantum Brayton cycle with coupled systems as working substance
We explore the quantum version of Brayton cycle with a composite system as
the working substance. The actual Brayton cycle consists of two adiabatic and
two isobaric processes. Two pressures can be defined in our isobaric process,
one corresponds to the external magnetic field (characterized by ) exerted
on the system, while the other corresponds to the coupling constant between the
subsystems (characterized by ). As a consequence, we can define two types
of quantum Brayton cycle for the composite system. We find that the subsystem
experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized
by ), whereas the subsystem's cycle is of quantum Otto in another Brayton
cycle (characterized by ). The efficiency for the composite system equals
to that for the subsystem in both cases, but the work done by the total system
are usually larger than the sum of work done by the two subsystems. The other
interesting finding is that for the cycle characterized by , the subsystem
can be a refrigerator while the total system is a heat engine. The result in
the paper can be generalized to a quantum Brayton cycle with a general coupled
system as the working substance.Comment: 7 pages, 3 figures, accepted by Phys. Rev.
Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models
We introduce a method to obtain the specific heat of quantum impurity models
via a direct calculation of the impurity internal energy requiring only the
evaluation of local quantities within a single numerical renormalization group
(NRG) calculation for the total system. For the Anderson impurity model, we
show that the impurity internal energy can be expressed as a sum of purely
local static correlation functions and a term that involves also the impurity
Green function. The temperature dependence of the latter can be neglected in
many cases, thereby allowing the impurity specific heat, , to be
calculated accurately from local static correlation functions; specifically via
, where and are the
energies of the (embedded) impurity and the hybridization energy, respectively.
The term involving the Green function can also be evaluated in cases where its
temperature dependence is non-negligible, adding an extra term to . For the non-degenerate Anderson impurity model, we show by comparison
with exact Bethe ansatz calculations that the results recover accurately both
the Kondo induced peak in the specific heat at low temperatures as well as the
high temperature peak due to the resonant level. The approach applies to
multiorbital and multichannel Anderson impurity models with arbitrary local
Coulomb interactions. An application to the Ohmic two state system and the
anisotropic Kondo model is also given, with comparisons to Bethe ansatz
calculations. The new approach could also be of interest within other impurity
solvers, e.g., within quantum Monte Carlo techniques.Comment: 16 pages, 15 figures, published versio
Macroscopic entanglement of many-magnon states
We study macroscopic entanglement of various pure states of a one-dimensional
N-spin system with N>>1. Here, a quantum state is said to be macroscopically
entangled if it is a superposition of macroscopically distinct states. To judge
whether such superposition is hidden in a general state, we use an essentially
unique index p: A pure state is macroscopically entangled if p=2, whereas it
may be entangled but not macroscopically if p<2. This index is directly related
to the stability of the state. We calculate the index p for various states in
which magnons are excited with various densities and wavenumbers. We find
macroscopically entangled states (p=2) as well as states with p=1. The former
states are unstable in the sense that they are unstable against some local
measurements. On the other hand, the latter states are stable in the senses
that they are stable against local measurements and that their decoherence
rates never exceed O(N) in any weak classical noises. For comparison, we also
calculate the von Neumann entropy S(N) of a subsystem composed of N/2 spins as
a measure of bipartite entanglement. We find that S(N) of some states with p=1
is of the same order of magnitude as the maximum value N/2. On the other hand,
S(N) of the macroscopically entangled states with p=2 is as small as O(log N)<<
N/2. Therefore, larger S(N) does not mean more instability. We also point out
that these results are analogous to those for interacting many bosons.
Furthermore, the origin of the huge entanglement, as measured either by p or
S(N), is discussed to be due to the spatial propagation of magnons.Comment: 30 pages, 5 figures. The manuscript has been shortened and typos have
been fixed. Data points of figures have been made larger in order to make
them clearly visibl
Instability of human societies as a result of conformity
We introduce a new model that mimics the strong and sudden effects induced by
conformity in tightly interacting human societies. Such effects range from mere
crowd phenomena to dramatic political turmoil. The model is a modified version
of the Ising Hamiltonian. We have studied the properties of this Hamiltonian
using both a Metropolis simulation and analytical derivations. Our study shows
that increasing the value of the conformity parameter, results in a first order
phase transition. As a result a majority of people begin honestly to support
the idea that may contradict the moral principles of a normal human beings
though each individual would support the moral principle without tight
interaction with the society. Thus, above some critical level of conformity our
society occurs to be instable with respect to ideas that might be doubtful. Our
model includes, in a simplified way, human diversity with respect to loyalty to
the moral principles.Comment: 5 pages, 5 figures, accepted in Int. journ of modern physics section
The Impact of Earnings on the Pricing of Credit Default Swaps
This study evaluates the impact of earnings on firm credit risk as captured by Credit
Default Swaps (CDS). We find that earnings (changes) are negatively correlated with
one-year swap premia (changes) after controlling for equity returns but not with longer term premia (changes). We also find that earnings surprises are significantly correlated with one-year CDS premia changes in the short window surrounding preliminary
earnings dates and that absolute earnings surprises are significantly correlated with
absolute one-year CDS premia changes in the short window surrounding SEC filing
dates. These results suggest that high earnings convey favorable information about the short-term default risk of firms but not about the long term default risk. We further
document that accruals/cash flow information conveyed by SEC filings provides
information about long-term credit risk. Furthermore, the empirical results are consistent with structural and hybrid model-driven implications of CDS pricing
AFM pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation
The thermodynamic driving force in the self-assembly of the secondary
structure of a class of donor-acceptor oligorotaxanes is elucidated by means of
molecular dynamics simulations of equilibrium isometric single-molecule force
spectroscopy AFM experiments. The oligorotaxanes consist of
cyclobis(paraquat-\emph{p}-phenylene) rings threaded onto an oligomer of
1,5-dioxynaphthalenes linked by polyethers. The simulations are performed in a
high dielectric medium using MM3 as the force field. The resulting force vs.
extension isotherms show a mechanically unstable region in which the molecule
unfolds and, for selected extensions, blinks in the force measurements between
a high-force and a low-force regime. From the force vs. extension data the
molecular potential of mean force is reconstructed using the weighted histogram
analysis method and decomposed into energetic and entropic contributions. The
simulations indicate that the folding of the oligorotaxanes is energetically
favored but entropically penalized, with the energetic contributions overcoming
the entropy penalty and effectively driving the self-assembly. In addition, an
analogy between the single-molecule folding/unfolding events driven by the AFM
tip and the thermodynamic theory of first-order phase transitions is discussed
and general conditions, on the molecule and the cantilever, for the emergence
of mechanical instabilities and blinks in the force measurements in equilibrium
isometric pulling experiments are presented. In particular, it is shown that
the mechanical stability properties observed during the extension are
intimately related to the fluctuations in the force measurements.Comment: 42 pages, 17 figures, accepted to the Journal of Chemical Physic
- …
