954 research outputs found
Anisotropy in Homogeneous Rotating Turbulence
The effective stress tensor of a homogeneous turbulent rotating fluid is
anisotropic. This leads us to consider the most general axisymmetric four-rank
``viscosity tensor'' for a Newtonian fluid and the new terms in the turbulent
effective force on large scales that arise from it, in addition to the
microscopic viscous force. Some of these terms involve couplings to vorticity
and others are angular momentum non conserving (in the rotating frame).
Furthermore, we explore the constraints on the response function and the
two-point velocity correlation due to axisymmetry. Finally, we compare our
viscosity tensor with other four-rank tensors defined in current approaches to
non-rotating anisotropic turbulence.Comment: 14 pages, RevTe
The decay of Batchelor and Saffman rotating turbulence
The decay rate of isotropic and homogeneous turbulence is known to be
affected by the large-scale spectrum of the initial perturbations, associated
with at least two cannonical self-preserving solutions of the von
K\'arm\'an-Howarth equation: the so-called Batchelor and Saffman spectra. The
effect of long-range correlations in the decay of anisotropic flows is less
clear, and recently it has been proposed that the decay rate of rotating
turbulence may be independent of the large-scale spectrum of the initial
perturbations. We analyze numerical simulations of freely decaying rotating
turbulence with initial energy spectra (Batchelor turbulence) and
(Saffman turbulence) and show that, while a self-similar decay
cannot be identified for the total energy, the decay is indeed affected by
long-range correlations. The decay of two-dimensional and three-dimensional
modes follows distinct power laws in each case, which are consistent with
predictions derived from the anisotropic von K\'arm\'an-Howarth equation, and
with conservation of anisotropic integral quantities by the flow evolution
Monitoring the spreading of industrial yeast populations in the winery environment
Resumo e poster da comunicação apresentada no "22nd International Specialized Symposium on Yeasts", em 2002, Kwa Maritane, África do Sul.Nowadays, about 50% of the European wine production is based on the use of active dried wine yeast. These strains were selected due to their good fermentation performance and to their capacity to produce a wine with desirable organoleptical characteristics. From an ecological point of view, they are non-indigenous, mostly S. cerevisiae strains that are annually introduced in the ecosystem surrounding the winery. The fate of those yeasts in the natural environment in different geographical localizations is totally unknown.
The present study aims to evaluate the industrial starter yeasts’ ability to survive and spread in nature, and become part of the natural microflora of musts.
A large-scale sampling plan was elaborated, including 6 different vineyards (3 in Portugal 3 in France), that use the same industrial yeast strain continuously in the last 5 years, being the winery located in close proximity to the vine. In each vineyard, 6 sampling sites were chosen depending on the predominating wind direction and the relative position to the winery. From each site, before and after the harvest, a sufficient amount of grapes was collected to perform small-scale fermentations (0,5 l). Must samples were plated when 30 g/l and 70g/l of CO2 were released, and in both cases, 30 randomly selected colonies were collected. The identification of the industrial yeast strains, Zymaflore VL1 from Laffort Oenologie and a labelled starter yeast, were performed by PCR-amplification of ∂-sequences [1, 2], pulse field electrophoresis and by the use of appropriate antibiotics containing media, respectively.
The overall duration of those studies is 3 years, and preliminary results of the first year will be presented
An hydrodynamic shear instability in stratified disks
We discuss the possibility that astrophysical accretion disks are dynamically
unstable to non-axisymmetric disturbances with characteristic scales much
smaller than the vertical scale height. The instability is studied using three
methods: one based on the energy integral, which allows the determination of a
sufficient condition of stability, one using a WKB approach, which allows the
determination of the necessary and sufficient condition for instability and a
last one by numerical solution. This linear instability occurs in any inviscid
stably stratified differential rotating fluid for rigid, stress-free or
periodic boundary conditions, provided the angular velocity decreases
outwards with radius . At not too small stratification, its growth rate is a
fraction of . The influence of viscous dissipation and thermal
diffusivity on the instability is studied numerically, with emphasis on the
case when (Keplerian case). Strong
stratification and large diffusivity are found to have a stabilizing effect.
The corresponding critical stratification and Reynolds number for the onset of
the instability in a typical disk are derived. We propose that the spontaneous
generation of these linear modes is the source of turbulence in disks,
especially in weakly ionized disks.Comment: 19 pages, 13 figures, to appear in A&
New insights on <i>Rimicaris exoculata</i> bacterial ectosymbiosis: a moult cycle related perspective
On two-dimensionalization of three-dimensional turbulence in shell models
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model,
the signatures of so-called two-dimensionalization effect of three-dimensional
incompressible, homogeneous, isotropic fully developed unforced turbulence have
been studied and reproduced. Within the framework of shell models we have
obtained the following results: (i) progressive steepening of the energy
spectrum with increased strength of the rotation, and, (ii) depletion in the
energy flux of the forward forward cascade, sometimes leading to an inverse
cascade. The presence of extended self-similarity and self-similar PDFs for
longitudinal velocity differences are also presented for the rotating 3D
turbulence case
Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing
Utilizing an eigenfunction decomposition, we study the growth and spectra of
energy in the vortical and wave modes of a 3D rotating stratified fluid as a
function of . Working in regimes characterized by moderate
Burger numbers, i.e. or , our results
indicate profound change in the character of vortical and wave mode
interactions with respect to . As with the reference state of
, for the wave mode energy saturates quite quickly
and the ensuing forward cascade continues to act as an efficient means of
dissipating ageostrophic energy. Further, these saturated spectra steepen as
decreases: we see a shift from to scaling for
(where and are the forcing and dissipation scales,
respectively). On the other hand, when the wave mode energy
never saturates and comes to dominate the total energy in the system. In fact,
in a sense the wave modes behave in an asymmetric manner about .
With regard to the vortical modes, for , the signatures of 3D
quasigeostrophy are clearly evident. Specifically, we see a scaling
for and, in accord with an inverse transfer of energy, the
vortical mode energy never saturates but rather increases for all . In
contrast, for and increasing, the vortical modes contain a
progressively smaller fraction of the total energy indicating that the 3D
quasigeostrophic subsystem plays an energetically smaller role in the overall
dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract
Developing a policy for paediatric biobanks: Principles for good practice
The participation of minors in biobank research can offer great benefits for science and health care. However, as minors are a vulnerable population they are also in need of adequate protective measures when they are enrolled in research. Research using biobanked biological samples from children poses additional ethical issues to those raised by research using adult biobanks. For example, small children have only limited capacity, if any, to understand the meaning and implications of the research and to give a documented agreement to it. Older minors are gradually acquiring this capacity. We describe principles for good practice related to the inclusion of minors in biobank research, focusing on issues related to benefits and subsidiarity, consent, proportionality and return of results. Some of these issues are currently heavily debated, and we conclude by providing principles for good practice for policy makers of biobanks, researchers and anyone involved in dealing with stored tissue samples from children. Actual implementation of the principles will vary according to different jurisdictions
- …
