5,548 research outputs found
Gaucher Disease and Myelofibrosis: A Combined Disease or a Misdiagnosis?
Background: Gaucher disease (GD) and primary myelofibrosis (PMF) share similar clinical and laboratory features, such as cytopenia, hepatosplenomegaly, and marrow fibrosis, often resulting in a misdiagnosis. Case Report: We report here the case of a young woman with hepatosplenomegaly, leukopenia, and thrombocytopenia. Based on bone marrow (BM) findings and on liver biopsy showing extramedullary hematopoiesis, an initial diagnosis of PMF was formulated. The patient refused stem cell transplantation from an HLA-identical sibling. Low-dose melphalan was given, without any improvement. Two years later, a BM evaluation showed Gaucher cells. Low glucocerebrosidase and high chitotriosidase levels were indicative for GD. Molecular analysis revealed N370S/complex I mutations. Enzyme replacement therapy with imiglucerase was commenced, resulting in clinical and hematological improvements. Due to an unexpected and persistent organomegaly, PMF combined with GD were suspected. JAK2V617F, JAK2 exon 12, MPL, calreticulin, and exon 9 mutations were negative, and BM examination showed no marrow fibrosis. PMF was excluded. Twenty years after starting treatment, the peripheral cell count and liver size were normal, whereas splenomegaly persisted. Conclusion: In order to avoid a misdiagnosis, a diagnostic algorithm for patients with hepatosplenomegaly combined with cytopenia is suggested
3D printing of optical materials: an investigation of the microscopic properties
3D printing technologies are currently enabling the fabrication of objects
with complex architectures and tailored properties. In such framework, the
production of 3D optical structures, which are typically based on optical
transparent matrices, optionally doped with active molecular compounds and
nanoparticles, is still limited by the poor uniformity of the printed
structures. Both bulk inhomogeneities and surface roughness of the printed
structures can negatively affect the propagation of light in 3D printed optical
components. Here we investigate photopolymerization-based printing processes by
laser confocal microscopy. The experimental method we developed allows the
printing process to be investigated in-situ, with microscale spatial
resolution, and in real-time. The modelling of the photo-polymerization
kinetics allows the different polymerization regimes to be investigated and the
influence of process variables to be rationalized. In addition, the origin of
the factors limiting light propagation in printed materials are rationalized,
with the aim of envisaging effective experimental strategies to improve optical
properties of printed materials.Comment: 8 pages, 3 figure
Space-like and time-like pion electromagnetic form factor and Fock state components within the Light-Front dynamics
The simultaneous investigation of the pion electromagnetic form factor in the
space- and time-like regions within a light-front model allows one to address
the issue of non-valence components of the pion and photon wave functions. Our
relativistic approach is based on a microscopic vector meson dominance (VMD)
model for the dressed vertex where a photon decays in a quark-antiquark pair,
and on a simple parametrization for the emission or absorption of a pion by a
quark. The results show an excellent agreement in the space like region up to
-10 , while in time-like region the model produces reasonable
results up to 10 .Comment: 74 pages, 11 figures, use revtex
Electromagnetic form factors in the light-front formalism and the Feynman triangle diagram: spin-0 and spin-1 two-fermion systems
The connection between the Feynman triangle diagram and the light-front
formalism for spin-0 and spin-1 two-fermion systems is analyzed. It is shown
that in the limit q+ = 0 the form factors for both spin-0 and spin-1 systems
can be uniquely determined using only the good amplitudes, which are not
affected by spurious effects related to the loss of rotational covariance
present in the light-front formalism. At the same time, the unique feature of
the suppression of the pair creation process is maintained. Therefore, a
physically meaningful one-body approximation, in which all the constituents are
on their mass-shells, can be consistently formulated in the limit q+ = 0.
Moreover, it is shown that the effects of the contact term arising from the
instantaneous propagation of the active constituent can be canceled out from
the triangle diagram by means of an appropriate choice of the off-shell
behavior of the bound state vertexes; this implies that in case of good
amplitudes the Feynman triangle diagram and the one-body light-front result
match exactly. The application of our covariant light-front approach to the
evaluation of the rho-meson elastic form factors is presented.Comment: corrected typos in the reference
Charge form factor of and mesons
The charge form factor of and mesons is evaluated adopting a
relativistic constituent quark model based on the light-front formalism. The
relevance of the high-momentum components of the meson wave function, for
values of the momentum transfer accessible to energies, is illustrated.
The predictions for the elastic form factor of and mesons are
compared with the results of different relativistic approaches, showing that
the measurements of the pion and kaon form factors planned at could
provide information for discriminating among various models of the meson
structure.Comment: 8 pages, latex, 4 figures available as separate .uu fil
Rare exclusive semileptonic b -> s transitions in the Standard Model
We study long-distance effects in rare exclusive semileptonic decays B -> (K,
K*) (l+ l-, nu bar{nu}) and analyze dilepton spectra and asymmetries within the
framework of the Standard Model. The form factors, describing the meson
transition amplitudes of the effective Hamiltonian are calculated within the
lattice-constrained dispersion quark model: the form factors are given by
dispersion representations through the wave functions of the initial and final
mesons, and these wave functions are chosen such that the B -> K* transition
form factors agree with the lattice results at large q**2. We calculate
branching ratios of semileptonic B -> K, K* transition modes and study the
sensitivity of observables to the long-distance contributions. The shape of the
forward-backward asymmetry and the longitudinal lepton polarization asymmetry
are found to be independent of the long-distance effects and mainly determined
by the values of the Wilson coefficients in the Standard Model.Comment: revtex, 17 pp., 5 figures with epsfig.st
Two Independent Pathways for Self-Recognition in Proteus Mirabilis Are Linked by Type VI-Dependent Export
Swarming colonies of the bacterium Proteus mirabilis are capable of self-recognition and territorial behavior. Swarms of independent P. mirabilis isolates can recognize each other as foreign and establish a visible boundary where they meet; in contrast, genetically identical swarms merge. The ids genes, which encode self-identity proteins, are necessary but not sufficient for this territorial behavior. Here we have identified two new gene clusters: one (idr) encodes rhs-related products, and another (tss) encodes a putative type VI secretion (T6S) apparatus. The Ids and Idr proteins function independently of each other in extracellular transport and in territorial behaviors; however, these self-recognition systems are linked via this type VI secretion system. The T6S system is required for export of select Ids and Idr proteins. Our results provide a mechanistic and physiological basis for the fundamental behaviors of self-recognition and territoriality in a bacterial model system.Molecular and Cellular Biolog
Slope of the Isgur-Wise function in the heavy mass limit of quark models \`a la Bakamjian-Thomas
The slope of the Isgur-Wise function for ground state mesons is evaluated for
the heavy mass limit of quark models \`a la Bakamjian-Thomas, which has been
previously discussed by us in general terms. A full calculation in various
spectroscopic models with relativistic kinetic energy gives a rather stable
result , much lower than previous estimates. Attention is
paid to a careful comparison of this result with the ones of QCD fundamental
methods (lattice QCD, QCD sum rules) and with experimental data.Comment: 15 pages, Latex, AMS-LaTe
- …
