1,096 research outputs found
Normal Ordering for Deformed Boson Operators and Operator-valued Deformed Stirling Numbers
The normal ordering formulae for powers of the boson number operator
are extended to deformed bosons. It is found that for the `M-type'
deformed bosons, which satisfy , the
extension involves a set of deformed Stirling numbers which replace the
Stirling numbers occurring in the conventional case. On the other hand, the
deformed Stirling numbers which have to be introduced in the case of the
`P-type' deformed bosons, which satisfy , are found to depend on the operator . This distinction
between the two types of deformed bosons is in harmony with earlier
observations made in the context of a study of the extended
Campbell-Baker-Hausdorff formula.Comment: 14 pages, Latex fil
Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields
We present counting methods for some special classes of multivariate
polynomials over a finite field, namely the reducible ones, the s-powerful ones
(divisible by the s-th power of a nonconstant polynomial), and the relatively
irreducible ones (irreducible but reducible over an extension field). One
approach employs generating functions, another one uses a combinatorial method.
They yield exact formulas and approximations with relative errors that
essentially decrease exponentially in the input size.Comment: to appear in SIAM Journal on Discrete Mathematic
A note on q-Euler numbers and polynomials
The purpose of this paper is to construct q-Euler numbers and polynomials by
using p-adic q-integral equations on Zp. Finally, we will give some interesting
formulae related to these q-Euler numbers and polynomials.Comment: 6 page
Some identities on derangement and degenerate derangement polynomials
In combinatorics, a derangement is a permutation that has no fixed points.
The number of derangements of an n-element set is called the n-th derangement
number. In this paper, as natural companions to derangement numbers and
degenerate versions of the companions we introduce derangement polynomials and
degenerate derangement polynomials. We give some of their properties,
recurrence relations and identities for those polynomials which are related to
some special numbers and polynomials.Comment: 12 page
The spin content of the proton in quenched QCD
We present preliminary results on the proton spin structure function at zero
momentum, in the quenched approximation. Our calculation makes use of a
nonperturbative means of determining the multiplicative renormalization of the
topological charge density.Comment: REVTEX, 6 pages, 1 PS figure attached. Pisa preprint IFUP-TH-14/9
On the Anomalous Discrete Symmetry
We examine an interesting scenario to solve the domain wall problem recently
suggested by Preskill, Trivedi, Wilczek and Wise. The effective potential is
calculated in the presence of the QCD axial anomaly. It is shown that some
discrete symmetries such as CP and Z_2 can be anomalous due to a so-called
-term induced by instantons. We point out that Z_2 domain-wall problem in
the two-doublet standard model can be resolved by two types of solutions: the
CP-conserving one and the CP-breaking one. In the first case, there exist two
Z_2-related local minima whose energy splitting is provided by the instanton
effect. In the second case, there is only one unique vacuum so that the domain
walls do not form at all. The consequences of this new source of CP violation
are discussed and shown to be well within the experimental limits in weak
interactions.Comment: 10 papges in LaTeX, SFU-Preprint-92-
A double bounded key identity for Goellnitz's (big) partition theorem
Given integers i,j,k,L,M, we establish a new double bounded q-series identity
from which the three parameter (i,j,k) key identity of Alladi-Andrews-Gordon
for Goellnitz's (big) theorem follows if L, M tend to infinity. When L = M, the
identity yields a strong refinement of Goellnitz's theorem with a bound on the
parts given by L. This is the first time a bounded version of Goellnitz's (big)
theorem has been proved. This leads to new bounded versions of Jacobi's triple
product identity for theta functions and other fundamental identities.Comment: 17 pages, to appear in Proceedings of Gainesville 1999 Conference on
Symbolic Computation
The Wigner function associated to the Rogers-Szego polynomials
We show here that besides the well known Hermite polynomials, the q-deformed
harmonic oscillator algebra admits another function space associated to a
particular family of q-polynomials, namely the Rogers-Szego polynomials. Their
main properties are presented, the associated Wigner function is calculated and
its properties are discussed. It is shown that the angle probability density
obtained from the Wigner function is a well-behaved function defined in the
interval [-Pi,Pi), while the action probability only assumes integer values
greater or equal than zero. It is emphasized the fact that the width of the
angle probability density is governed by the free parameter q characterizing
the polynomial.Comment: 12 pages, 2 (mathemathica) figure
Chern-Simons matrix models and Stieltjes-Wigert polynomials
Employing the random matrix formulation of Chern-Simons theory on Seifert
manifolds, we show how the Stieltjes-Wigert orthogonal polynomials are useful
in exact computations in Chern-Simons matrix models. We construct a
biorthogonal extension of the Stieltjes-Wigert polynomials, not available in
the literature, necessary to study Chern-Simons matrix models when the geometry
is a lens space. We also discuss several other results based on the properties
of the polynomials: the equivalence between the Stieltjes-Wigert matrix model
and the discrete model that appears in q-2D Yang-Mills and the relationship
with Rogers-Szego polynomials and the corresponding equivalence with an unitary
matrix model. Finally, we also give a detailed proof of a result that relates
quantum dimensions with averages of Schur polynomials in the Stieltjes-Wigert
ensemble.Comment: 25 pages, AMS-LaTe
LU factorizations, q=0 limits, and p-adic interpretations of some q-hypergeometric orthogonal polynomials
For little q-Jacobi polynomials and q-Hahn polynomials we give particular
q-hypergeometric series representations in which the termwise q=0 limit can be
taken. When rewritten in matrix form, these series representations can be
viewed as LU factorizations. We develop a general theory of LU factorizations
related to complete systems of orthogonal polynomials with discrete
orthogonality relations which admit a dual system of orthogonal polynomials.
For the q=0 orthogonal limit functions we discuss interpretations on p-adic
spaces. In the little 0-Jacobi case we also discuss product formulas.Comment: changed title, references updated, minor changes matching the version
to appear in Ramanujan J.; 22 p
- …
