1,096 research outputs found

    Normal Ordering for Deformed Boson Operators and Operator-valued Deformed Stirling Numbers

    Full text link
    The normal ordering formulae for powers of the boson number operator n^\hat{n} are extended to deformed bosons. It is found that for the `M-type' deformed bosons, which satisfy aaqaa=1a a^{\dagger} - q a^{\dagger} a = 1, the extension involves a set of deformed Stirling numbers which replace the Stirling numbers occurring in the conventional case. On the other hand, the deformed Stirling numbers which have to be introduced in the case of the `P-type' deformed bosons, which satisfy aaqaa=qn^a a^{\dagger} - q a^{\dagger} a = q^{-\hat{n}}, are found to depend on the operator n^\hat{n}. This distinction between the two types of deformed bosons is in harmony with earlier observations made in the context of a study of the extended Campbell-Baker-Hausdorff formula.Comment: 14 pages, Latex fil

    Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields

    Full text link
    We present counting methods for some special classes of multivariate polynomials over a finite field, namely the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), and the relatively irreducible ones (irreducible but reducible over an extension field). One approach employs generating functions, another one uses a combinatorial method. They yield exact formulas and approximations with relative errors that essentially decrease exponentially in the input size.Comment: to appear in SIAM Journal on Discrete Mathematic

    A note on q-Euler numbers and polynomials

    Full text link
    The purpose of this paper is to construct q-Euler numbers and polynomials by using p-adic q-integral equations on Zp. Finally, we will give some interesting formulae related to these q-Euler numbers and polynomials.Comment: 6 page

    Some identities on derangement and degenerate derangement polynomials

    Full text link
    In combinatorics, a derangement is a permutation that has no fixed points. The number of derangements of an n-element set is called the n-th derangement number. In this paper, as natural companions to derangement numbers and degenerate versions of the companions we introduce derangement polynomials and degenerate derangement polynomials. We give some of their properties, recurrence relations and identities for those polynomials which are related to some special numbers and polynomials.Comment: 12 page

    The spin content of the proton in quenched QCD

    Full text link
    We present preliminary results on the proton spin structure function at zero momentum, in the quenched approximation. Our calculation makes use of a nonperturbative means of determining the multiplicative renormalization of the topological charge density.Comment: REVTEX, 6 pages, 1 PS figure attached. Pisa preprint IFUP-TH-14/9

    On the Anomalous Discrete Symmetry

    Full text link
    We examine an interesting scenario to solve the domain wall problem recently suggested by Preskill, Trivedi, Wilczek and Wise. The effective potential is calculated in the presence of the QCD axial anomaly. It is shown that some discrete symmetries such as CP and Z_2 can be anomalous due to a so-called KK-term induced by instantons. We point out that Z_2 domain-wall problem in the two-doublet standard model can be resolved by two types of solutions: the CP-conserving one and the CP-breaking one. In the first case, there exist two Z_2-related local minima whose energy splitting is provided by the instanton effect. In the second case, there is only one unique vacuum so that the domain walls do not form at all. The consequences of this new source of CP violation are discussed and shown to be well within the experimental limits in weak interactions.Comment: 10 papges in LaTeX, SFU-Preprint-92-

    A double bounded key identity for Goellnitz's (big) partition theorem

    Full text link
    Given integers i,j,k,L,M, we establish a new double bounded q-series identity from which the three parameter (i,j,k) key identity of Alladi-Andrews-Gordon for Goellnitz's (big) theorem follows if L, M tend to infinity. When L = M, the identity yields a strong refinement of Goellnitz's theorem with a bound on the parts given by L. This is the first time a bounded version of Goellnitz's (big) theorem has been proved. This leads to new bounded versions of Jacobi's triple product identity for theta functions and other fundamental identities.Comment: 17 pages, to appear in Proceedings of Gainesville 1999 Conference on Symbolic Computation

    The Wigner function associated to the Rogers-Szego polynomials

    Full text link
    We show here that besides the well known Hermite polynomials, the q-deformed harmonic oscillator algebra admits another function space associated to a particular family of q-polynomials, namely the Rogers-Szego polynomials. Their main properties are presented, the associated Wigner function is calculated and its properties are discussed. It is shown that the angle probability density obtained from the Wigner function is a well-behaved function defined in the interval [-Pi,Pi), while the action probability only assumes integer values greater or equal than zero. It is emphasized the fact that the width of the angle probability density is governed by the free parameter q characterizing the polynomial.Comment: 12 pages, 2 (mathemathica) figure

    Chern-Simons matrix models and Stieltjes-Wigert polynomials

    Get PDF
    Employing the random matrix formulation of Chern-Simons theory on Seifert manifolds, we show how the Stieltjes-Wigert orthogonal polynomials are useful in exact computations in Chern-Simons matrix models. We construct a biorthogonal extension of the Stieltjes-Wigert polynomials, not available in the literature, necessary to study Chern-Simons matrix models when the geometry is a lens space. We also discuss several other results based on the properties of the polynomials: the equivalence between the Stieltjes-Wigert matrix model and the discrete model that appears in q-2D Yang-Mills and the relationship with Rogers-Szego polynomials and the corresponding equivalence with an unitary matrix model. Finally, we also give a detailed proof of a result that relates quantum dimensions with averages of Schur polynomials in the Stieltjes-Wigert ensemble.Comment: 25 pages, AMS-LaTe

    LU factorizations, q=0 limits, and p-adic interpretations of some q-hypergeometric orthogonal polynomials

    Full text link
    For little q-Jacobi polynomials and q-Hahn polynomials we give particular q-hypergeometric series representations in which the termwise q=0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as LU factorizations. We develop a general theory of LU factorizations related to complete systems of orthogonal polynomials with discrete orthogonality relations which admit a dual system of orthogonal polynomials. For the q=0 orthogonal limit functions we discuss interpretations on p-adic spaces. In the little 0-Jacobi case we also discuss product formulas.Comment: changed title, references updated, minor changes matching the version to appear in Ramanujan J.; 22 p
    corecore