4,006 research outputs found
Determination of the (3x3)-Sn/Ge(111) structure by photoelectron diffraction
At a coverage of about 1/3 monolayer, Sn deposited on Ge(111) below 550 forms
a metastable (sqrt3 x sqrt3)R30 phase. This phase continuously and reversibly
transforms into a (3x3) one, upon cooling below 200 K. The photoemission
spectra of the Sn 4d electrons from the (3x3)-Sn/Ge(111) surface present two
components which are attributed to inequivalent Sn atoms in T4 bonding sites.
This structure has been explored by photoelectron diffraction experiments
performed at the ALOISA beamline of the Elettra storage ring in Trieste
(Italy). The modulation of the intensities of the two Sn components, caused by
the backscattering of the underneath Ge atoms, has been measured as a function
of the emission angle at fixed kinetic energies and viceversa. The bond angle
between Sn and its nearest neighbour atoms in the first Ge layer (Sn-Ge1) has
been measured by taking polar scans along the main symmetry directions and it
was found almost equivalent for the two components. The corresponding bond
lengths are also quite similar, as obtained by studying the dependence on the
photoelectron kinetic energy, while keeping the photon polarization and the
collection direction parallel to the Sn-Ge1 bond orientation (bond emission). A
clear difference between the two bonding sites is observed when studying the
energy dependence at normal emission, where the sensitivity to the Sn height
above the Ge atom in the second layer is enhanced. This vertical distance is
found to be 0.3 Angstroms larger for one Sn atom out of the three contained in
the lattice unit cell. The (3x3)-Sn/Ge(111) is thus characterized by a
structure where the Sn atom and its three nearest neighbour Ge atoms form a
rather rigid unit that presents a strong vertical distortion with respect to
the underneath atom of the second Ge layer.Comment: 10 pages with 9 figures, added reference
Phase transitions in two dimensions - the case of Sn adsorbed on Ge(111) surfaces
Accurate atomic coordinates of the room-temperature (root3xroot3)R30degree
and low-temperature (3x3) phases of 1/3 ML Sn on Ge(111) have been established
by grazing-incidence x-ray diffraction with synchrotron radiation. The Sn atoms
are located solely at T4-sites in the (root3xroot3)R30degree structure. In the
low temperature phase one of the three Sn atoms per (3x3) unit cell is
displaced outwards by 0.26 +/- 0.04 A relative to the other two. This
displacement is accompanied by an increase in the first to second double-layer
spacing in the Ge substrate.Comment: RevTeX, 5 pages including 2 figure
Disproportionation Phenomena on Free and Strained Sn/Ge(111) and Sn/Si(111) Surfaces
Distortions of the Sn/Ge(111) and Sn/Si(111) surfaces
are shown to reflect a disproportionation of an integer pseudocharge, ,
related to the surface band occupancy. A novel understanding of the
-1U (``1 up, 2 down'') and 2U (``2 up, 1 down'') distortions of
Sn/Ge(111) is obtained by a theoretical study of the phase diagram under
strain. Positive strain keeps the unstrained value Q=3 but removes distorsions.
Negative strain attracts pseudocharge from the valence band causing first a
-2U distortion (Q=4) on both Sn/Ge and Sn/Si, and eventually a
-3U (``all up'') state with Q=6. The possibility of a
fluctuating phase in unstrained Sn/Si(111) is discussed.Comment: Revtex, 5 pages, 3 figure
Influence of pharmacogenetic variability on the pharmacokinetics and toxicity of the aurora kinase inhibitor danusertib
Objectives Danusertib is a serine/threonine kinase inhibitor of multiple kinases, including aurora-A, B, and C. This explorative study aims to identify possible relationships between single nucleotide polymorphisms in genes coding for drug metabolizing enzymes and transporter proteins and clearance of danusertib, to clarify the interpatient variability in exposure. In addition, this study explores the relationship between target receptor polymorphisms and toxicity of danusertib. Methods For associations with clearance, 48 cancer patients treated in a phase I study were analyzed for ABCB1, ABCG2 and FMO3 polymorphisms. Association analyses between neutropenia and drug target receptors, including KDR, RET, FLT3, FLT4, AURKB and AURKA, were performed in 30 patients treated at recommended phase II dose-levels in three danusertib phase I or phase II trials. Results No relationships between danusertib clearance and drug metabolizing enzymes and transporter protein polymorphisms were found. Only, for the one patient with FMO3 18281AA polymorphism, a significantly higher clearance was noticed, compared to patients carrying at least 1 wild type allele. No effect of target receptor genotypes or haplotypes on neutropenia was observed. Conclusions As we did not find any major correlations between pharmacogenetic variability in the studied enzymes and transporters and pharmacokinetics nor toxicity, it is unlikely that danusertib is highly susceptible for pharmacogenetic variation. Therefore, no dosing alterations of danusertib are expected in the future, based on the polymorphisms studied. However, the relationship between FMO3 polymorphisms and clearance of danusertib warrants further research, as we could study only a small group of patients
Ultramicronized palmitoylethanolamide rescues learning and memory impairments in a triple transgenic mouse model of Alzheimer's disease by exerting anti-inflammatory and neuroprotective effects
In an aging society, Alzheimer’s disease (AD) exerts an increasingly serious health and economic burden. Current treatments provide inadequate symptomatic relief as several distinct pathological processes are thought to underlie the decline of cognitive and neural function seen in AD. This suggests that the efficacy of treatment requires a multitargeted approach. In this context, palmitoylethanolamide (PEA) provides a novel potential adjunct therapy that can be incorporated into a multitargeted treatment strategy. We used young (6-month-old) and adult (12-month-old) 3×Tg-AD mice that received ultramicronized PEA (um-PEA) for 3 months via a subcutaneous delivery system. Mice were tested with a range of cognitive and noncognitive tasks, scanned with magnetic resonance imaging/magnetic resonance spectroscopy (MRI/MRS), and neurochemical release was assessed by microdialysis. Potential neuropathological mechanisms were assessed postmortem by western blot, reverse transcription–polymerase chain reaction (RT-PCR), and immunofluorescence. Our data demonstrate that um-PEA improves learning and memory, and ameliorates both the depressive and anhedonia-like phenotype of 3×Tg-AD mice. Moreover, it reduces Aβ formation, the phosphorylation of tau proteins, and promotes neuronal survival in the CA1 subregion of the hippocampus. Finally, um-PEA normalizes astrocytic function, rebalances glutamatergic transmission, and restrains neuroinflammation. The efficacy of um-PEA is particularly potent in younger mice, suggesting its potential as an early treatment. These data demonstrate that um-PEA is a novel and effective promising treatment for AD with the potential to be integrated into a multitargeted treatment strategy in combination with other drugs. Um-PEA is already registered for human use. This, in combination with our data, suggests the potential to rapidly proceed to clinical use
Surface Phase Transitions Induced by Electron Mediated Adatom-Adatom Interaction
We propose that the indirect adatom-adatom interaction mediated by the
conduction electrons of a metallic surface is responsible for the
structural phase transitions
observed in Sn/Ge (111) and Pb/Ge (111). When the indirect interaction
overwhelms the local stress field imposed by the substrate registry, the system
suffers a phonon instability, resulting in a structural phase transition in the
adlayer. Our theory is capable of explaining all the salient features of the
transitions observed in
Sn/Ge (111) and Pb/Ge (111), and is in principle applicable to a wide class of
systems whose surfaces are metallic before the transition.Comment: 4 pages, 5 figure
Charge density waves and surface Mott insulators for adlayer structures on semiconductors: extended Hubbard modeling
Motivated by the recent experimental evidence of commensurate surface charge
density waves (CDW) in Pb/Ge(111) and Sn/Ge(111) sqrt{3}-adlayer structures, as
well as by the insulating states found on K/Si(111):B and SiC(0001), we have
investigated the role of electron-electron interactions, and also of
electron-phonon coupling, on the narrow surface state band originating from the
outer dangling bond orbitals of the surface. We model the sqrt{3} dangling bond
lattice by an extended two-dimensional Hubbard model at half-filling on a
triangular lattice. We include an on-site Hubbard repulsion U and a
nearest-neighbor Coulomb interaction V, plus a long-ranged Coulomb tail. The
electron-phonon interaction is treated in the deformation potential
approximation. We have explored the phase diagram of this model including the
possibility of commensurate 3x3 phases, using mainly the Hartree-Fock
approximation. For U larger than the bandwidth we find a non-collinear
antiferromagnetic SDW insulator, possibly corresponding to the situation on the
SiC and K/Si surfaces. For U comparable or smaller, a rich phase diagram
arises, with several phases involving combinations of charge and
spin-density-waves (SDW), with or without a net magnetization. We find that
insulating, or partly metallic 3x3 CDW phases can be stabilized by two
different physical mechanisms. One is the inter-site repulsion V, that together
with electron-phonon coupling can lower the energy of a charge modulation. The
other is a novel magnetically-induced Fermi surface nesting, stabilizing a net
cell magnetization of 1/3, plus a collinear SDW, plus an associated weak CDW.
Comparison with available experimental evidence, and also with first-principle
calculations is made.Comment: 11 pages, 9 figure
A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer
Prostate cancer is the most common disease in men and the second leading
cause of death from cancer. Generic large imaging instruments used in cancer
diagnosis have sensitivity, spatial resolution, and contrast inadequate for the
task of imaging details of a small organ such as the prostate. In addition,
multimodality imaging can play a significant role merging anatomical and
functional details coming from simultaneous PET and MRI. Indeed,
multi-parametric PET/MRI was demonstrated to improve diagnosis, but it suffers
from too many false positives. In order to address the above limits of the
current techniques, we have proposed, built and tested, thanks to the TOPEM
project funded by Italian National Institute of Nuclear Phisics a prototype of
an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry,
performance is dominated by a high-resolution detector placed closer to the
source. The expected spatial resolution in the selected geometry is about 1.5
mm FWHM and efficiency a factor of 2 with respect to what obtained with the
conventional PET scanner. In our experimental studies, we have obtained timing
resolution of ~ 320 ps FWHM and at the same time Depth of Interaction (DOI)
resolution of under 1 mm. Tests also showed that mutual adverse PET-MR effects
are minimal. In addition, the matching endorectal RF coil was designed, built
and tested. In the next planned studies, we expect that benefiting from the
further progress in scintillator crystal surface treatment, in SiPM technology
and associated electronics would allow us to significantly improve TOF
resolutio
Theory of the "honeycomb chain-channel" reconstruction of Si(111)3x1
First-principles electronic-structure methods are used to study a structural
model for Ag/Si(111)3x1 recently proposed on the basis of transmission electron
diffraction data. The fully relaxed geometry for this model is far more
energetically favorable than any previously proposed, partly due to the unusual
formation of a Si double bond in the surface layer. The calculated electronic
properties of this model are in complete agreement with data from
angle-resolved photoemission and scanning tunneling microscopy.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett (the ugly postscript
error on page 4 has now been repaired
Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably
unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential
for a 1 m segmented plastic scintillator detector placed downstream of the
beam-dump at one of the high intensity JLab experimental Halls, receiving up to
10 electrons-on-target (EOT) in a one-year period. This experiment
(Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at
the level of a thousand counts per year, with very low threshold recoil
energies (1 MeV), and limited only by reducible cosmogenic backgrounds.
Sensitivity to DM-electron elastic scattering and/or inelastic DM would be
below 10 counts per year after requiring all electromagnetic showers in the
detector to exceed a few-hundred MeV, which dramatically reduces or altogether
eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to
finalize the detector design and experimental set up. An existing 0.036 m
prototype based on the same technology will be used to validate simulations
with background rate estimates, driving the necessary RD towards an
optimized detector. The final detector design and experimental set up will be
presented in a full proposal to be submitted to the next JLab PAC. A fully
realized experiment would be sensitive to large regions of DM parameter space,
exceeding the discovery potential of existing and planned experiments by two
orders of magnitude in the MeV-GeV DM mass range.Comment: 28 pages, 17 figures, submitted to JLab PAC 4
- …
