155 research outputs found
Numerical loop quantum cosmology: an overview
A brief review of various numerical techniques used in loop quantum cosmology
and results is presented. These include the way extensive numerical simulations
shed insights on the resolution of classical singularities, resulting in the
key prediction of the bounce at the Planck scale in different models, and the
numerical methods used to analyze the properties of the quantum difference
operator and the von Neumann stability issues. Using the quantization of a
massless scalar field in an isotropic spacetime as a template, an attempt is
made to highlight the complementarity of different methods to gain
understanding of the new physics emerging from the quantum theory. Open
directions which need to be explored with more refined numerical methods are
discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and
Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
Spherically Symmetric Quantum Geometry: Hamiltonian Constraint
Variables adapted to the quantum dynamics of spherically symmetric models are
introduced, which further simplify the spherically symmetric volume operator
and allow an explicit computation of all matrix elements of the Euclidean and
Lorentzian Hamiltonian constraints. The construction fits completely into the
general scheme available in loop quantum gravity for the quantization of the
full theory as well as symmetric models. This then presents a further
consistency check of the whole scheme in inhomogeneous situations, lending
further credence to the physical results obtained so far mainly in homogeneous
models. New applications in particular of the spherically symmetric model in
the context of black hole physics are discussed.Comment: 33 page
Perturbative Degrees of Freedom in Loop Quantum Gravity: Anisotropies
The relation between an isotropic and an anisotropic model in loop quantum
cosmology is discussed in detail, comparing the strict symmetry reduction with
a perturbative implementation of symmetry. While the latter cannot be done in a
canonical manner, it allows to consider the dynamics including the role of
small non-symmetric degrees of freedom for the symmetric evolution. This serves
as a model for the general situation of perturbative degrees of freedom in a
background independent quantization such as loop quantum gravity, and for the
more complicated addition of perturbative inhomogeneities. While being crucial
for cosmological phenomenology, it is shown that perturbative non-symmetric
degrees of freedom do not allow definitive conclusions for the singularity
issue and in such a situation could even lead to wrong claims.Comment: 32 page
Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup
Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD
On (Cosmological) Singularity Avoidance in Loop Quantum Gravity
Loop Quantum Cosmology (LQC), mainly due to Bojowald, is not the cosmological
sector of Loop Quantum Gravity (LQG). Rather, LQC consists of a truncation of
the phase space of classical General Relativity to spatially homogeneous
situations which is then quantized by the methods of LQG. Thus, LQC is a
quantum mechanical toy model (finite number of degrees of freedom) for LQG(a
genuine QFT with an infinite number of degrees of freedom) which provides
important consistency checks. However, it is a non trivial question whether the
predictions of LQC are robust after switching on the inhomogeneous fluctuations
present in full LQG. Two of the most spectacular findings of LQC are that 1.
the inverse scale factor is bounded from above on zero volume eigenstates which
hints at the avoidance of the local curvature singularity and 2. that the
Quantum Einstein Equations are non -- singular which hints at the avoidance of
the global initial singularity. We display the result of a calculation for LQG
which proves that the (analogon of the) inverse scale factor, while densely
defined, is {\it not} bounded from above on zero volume eigenstates. Thus, in
full LQG, if curvature singularity avoidance is realized, then not in this
simple way. In fact, it turns out that the boundedness of the inverse scale
factor is neither necessary nor sufficient for curvature singularity avoidance
and that non -- singular evolution equations are neither necessary nor
sufficient for initial singularity avoidance because none of these criteria are
formulated in terms of observable quantities.After outlining what would be
required, we present the results of a calculation for LQG which could be a
first indication that our criteria at least for curvature singularity avoidance
are satisfied in LQG.Comment: 34 pages, 16 figure
Long-Term Survival in Patients With Tracheostomy and Prolonged Mechanical Ventilation in Olmsted County, Minnesota
Low immunoglobulin levels increase the risk of severe hypogammaglobulinemia in granulomatosis with polyangiitis patients receiving rituximab
Current therapy of granulomatosis with polyangiitis and microscopic polyangiitis: the role of rituximab.
Granulomatosis with polyangiitis and microscopic polyangiitis are anti-neutrophil cytoplasmic antibody-associated vasculitides (AAVs) that are prone to cycles of remission and relapse. The introduction of cytotoxic therapy has changed the prognosis for these diseases from typically fatal to manageable chronic illnesses with a relapsing course. Despite improvements in outcomes, recurrence of disease and drug-related toxicity continue to produce significant morbidity and mortality. Better understanding of the pathogenesis of AAV and the mechanism of action of cyclophosphamide has led to investigation of therapies that target B cells. Two randomized controlled trials have shown that rituximab is not inferior to cyclophosphamide for induction of remission in severe AAV, with no significant difference in the incidence of overall adverse events in rituximab- versus cyclophosphamide-treated patients. Data from ongoing clinical trials will determine the role of rituximab in the maintenance of remission
Loop Quantum Cosmology
Quantum gravity is expected to be necessary in order to understand situations
where classical general relativity breaks down. In particular in cosmology one
has to deal with initial singularities, i.e. the fact that the backward
evolution of a classical space-time inevitably comes to an end after a finite
amount of proper time. This presents a breakdown of the classical picture and
requires an extended theory for a meaningful description. Since small length
scales and high curvatures are involved, quantum effects must play a role. Not
only the singularity itself but also the surrounding space-time is then
modified. One particular realization is loop quantum cosmology, an application
of loop quantum gravity to homogeneous systems, which removes classical
singularities. Its implications can be studied at different levels. Main
effects are introduced into effective classical equations which allow to avoid
interpretational problems of quantum theory. They give rise to new kinds of
early universe phenomenology with applications to inflation and cyclic models.
To resolve classical singularities and to understand the structure of geometry
around them, the quantum description is necessary. Classical evolution is then
replaced by a difference equation for a wave function which allows to extend
space-time beyond classical singularities. One main question is how these
homogeneous scenarios are related to full loop quantum gravity, which can be
dealt with at the level of distributional symmetric states. Finally, the new
structure of space-time arising in loop quantum gravity and its application to
cosmology sheds new light on more general issues such as time.Comment: 104 pages, 10 figures; online version, containing 6 movies, available
at http://relativity.livingreviews.org/Articles/lrr-2005-11
Peripheral blood natural killer cell percentages in granulomatosis with polyangiitis correlate with disease inactivity and stage
- …
