228 research outputs found
Chromosome Oscillations in Mitosis
Successful cell division requires a tight regulation of chromosome motion via
the activity of molecular motors. Many of the key players at the origin of the
forces generating the movement have been identified, but their spatial and
temporal organization remains elusive. The protein complex Kinetochore on the
chromosome associates with microtubules emanating from one of the spindle poles
and drives the chromosome toward the pole. Chromokinesin motors on the
chromosome arms also interact with microtubules, ejecting the chromosome away
from the pole. In animal cells, a monooriented chromosome (associated to a
single pole) periodically switches between phases of poleward and away from the
pole movement[, a behavior tentatively explained so far by the existence of a
complex switching mechanism within the kinetochore itself. Here we show that
the interplay between the morphology of the mitotic spindle and the collective
kinetics of chromokinesins can account for the highly non-linear periodic
chromosome motion. Our analysis provides a natural explanation for the origin
of chromosome directional instability and for the mechanism by which
chromosomes feel their position in space.Comment: http://hogarth.pct.espci.fr/~pierre
Real-time observations of microtubule dynamic instability in living cells
Individual microtubule dynamics were observed in real time in primary cultures of newt lung epithelium using video-enhanced differential interference contrast microscopy and digital image processing. The linear filaments observed in cells corresponded to microtubules based on three criteria: (a) small particles translocated along them; (b) the majority of them disappeared after incubation in nocodazole; (c) and the distribution observed by differential interference contrast correlated with anti-tubulin immunofluorescence staining of the same cell. Microtubules were most clearly observed at the leading edge of cells located at the periphery of the epithelial sheet. Microtubules exhibited dynamic instability behavior: individual microtubules existed in persistent phases of elongation or rapid shortening. Microtubules elongated at a velocity of 7.2 micron/min +/- 0.3 SEM (n = 42) and rapidly shortened at a velocity of 17.3 micron/min +/- 0.7 SEM (n = 35). The transitions between elongation and rapid shortening occurred abruptly and stochastically with a transition frequency of 0.014 s-1 for catastrophe and 0.044 s-1 for rescue. Approximately 70% of the rapidly shortening microtubules were rescued and resumed elongation within the 35 x 35 micron microscopic field. A portion of the microtubule population appeared differentially stable and did not display any measurable elongation or shortening during 10-15-min observations
Kinetochore microtubules shorten by loss of subunits at the kinetochores of prometaphase chromosomes
The site of tubulin subunit dissociation was determined during poleward chromosome movement in prometaphase newt lung cell mitotic spindles using fluorescence photobleaching techniques and nocodazole-induced spindle shortening. Synchronous shortening of all kinetochore microtubules was produced by incubating cells in 17 microM nocodazole to block microtubule assembly. Under these conditions the spindle poles moved towards the metaphase plate at a rate of 3.6 +/- 0.4 microns min-1 (n = 3). On the basis of anti-tubulin immunofluorescent staining of cells fixed after incubation in nocodazole, we found that nonkinetochore microtubules rapidly disappeared and only kinetochore fibers were present after 60-90 s in nocodazole. To localize the site of tubulin subunit dissociation, a narrow bar pattern was photobleached across one half-spindle in prometaphase-metaphase cells previously microinjected with 5-(4,6-dichlorotriazin-2-yl) amino fluorescein (DTAF)-labeled tubulin. Immediately after photobleaching, cells were perfused with 17 microM nocodazole to produce shortening of kinetochore microtubules. Shortening was accompanied by a decrease in the distance between the bleach bar and the kinetochores. In contrast, there was little or no decrease in the distance between the bleach bar and the pole. Compared to their initial lengths, the average kinetochore to pole distance shortened by 18%, the bleach bar to kinetochore distance shortened by 28% and the average bleached bar to pole distance shortened by 1.6%. The data provide evidence that tubulin subunits dissociate from kinetochore microtubules at a site near the kinetochore during poleward chromosome movement. These results are consistent with models of poleward force generation for chromosome movement in which prometaphase-metaphase poleward force is generated in association with the kinetochore
XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover.
The formin mDia2 stabilizes microtubules independently of its actin nucleation activity
A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity
Chemoattractant-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities.
Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle
During mitosis a monooriented chromosome oscillates toward and away from its associated spindle pole and may be positioned many micrometers from the pole at the time of anaphase. We tested the hypothesis of Pickett-Heaps et al. (Pickett-Heaps, J. D., D. H. Tippit, and K. R. Porter, 1982, Cell, 29:729-744) that this behavior is generated by the sister kinetochores of a chromosome interacting with, and moving in opposite direction along, the same set of polar microtubules. When the sister chromatids of a monooriented chromosome split at the onset of anaphase in newt lung cells, the proximal chromatid remains stationary or moves closer to the pole, with the kinetochore leading. During this time the distal chromatid moves a variable distance radially away from the pole, with one or both chromatid arms leading. Subsequent electron microscopy of these cells revealed that the kinetochore on the distal chromatid is free of microtubules. These results suggest that the distal kinetochore is not involved in the positioning of a monooriented chromosome relative to the spindle pole or in its oscillatory movements. To test this conclusion we used laser microsurgery to create monooriented chromosomes containing one kinetochore. Correlative light and electron microscopy revealed that chromosomes containing one kinetochore continue to undergo normal oscillations. Additional observations on normal and laser-irradiated monooriented chromosomes indicated that the chromosome does not change shape, and that the kinetochore region is not deformed, during movement away from the pole. Thus movement away from the pole during an oscillation does not appear to arise from a push generated by the single pole-facing kinetochore fiber, as postulated (Bajer, A. S., 1982, J. Cell Biol., 93:33-48). When the chromatid arms of a monooriented chromosome are cut free of the kinetochore, they are immediately ejected radially outward from the spindle pole at a constant velocity of 2 micron/min. This ejection velocity is similar to that of the outward movement of an oscillating chromosome. We conclude that the oscillations of a monooriented chromosome and its position relative to the spindle pole result from an imbalance between poleward pulling forces acting at the proximal kinetochore and an ejection force acting along the chromosome, which is generated within the aster and half-spindle
Clocking the Lyme Spirochete
In order to clear the body of infecting spirochetes, phagocytic cells must be able to get hold of them. In real-time phase-contrast videomicroscopy we were able to measure the speed of Borrelia burgdorferi (Bb), the Lyme spirochete, moving back and forth across a platelet to which it was tethered. Its mean crossing speed was 1,636 µm/min (N = 28), maximum, 2800 µm/min (N = 3). This is the fastest speed recorded for a spirochete, and upward of two orders of magnitude above the speed of a human neutrophil, the fastest cell in the body. This alacrity and its interpretation, in an organism with bidirectional motor capacity, may well contribute to difficulties in spirochete clearance by the host
Rules of engagement promote polarity in RNA trafficking
Many cell biological pathways exhibit overall polarity (net movement of molecules in one direction) even though individual molecular interactions in the pathway are freely reversible. The A2 RNA trafficking pathway exhibits polarity in moving specific RNA molecules from the nucleus to localization sites in the myelin compartment of oligodendrocytes or dendritic spines in neurons. The A2 pathway is mediated by a ubiquitously expressed trans-acting trafficking factor (hnRNP A2) that interacts with a specific 11 nucleotide cis-acting trafficking sequence termed the A2 response element (A2RE) found in several localized RNAs. Five different molecular partners for hnRNP A2 have been identified in the A2 pathway: hnRNP A2 itself, transportin, A2RE RNA, TOG (tumor overexpressed gene) and hnRNP E1, each playing a key role in one particular step of the A2 pathway. Sequential interactions of hnRNP A2 with different molecular partners at each step mediate directed movement of trafficking intermediates along the pathway. Specific "rules of engagement" (both and, either or, only if) govern sequential interactions of hnRNP A2 with each of its molecular partners. Rules of engagement are defined experimentally using three component binding assays to measure differential binding of hnRNP A2 to one partner in the presence of each of the other partners in the pathway. Here we describe rules of engagement for hnRNP A2 binding to each of its molecular partners and discuss how these rules of engagement promote polarity in the A2 RNA trafficking pathway. For molecules with multiple binding partners, specific rules of engagement govern different molecular interactions. Rules of engagement are ultimately determined by structural relationships between binding sites on individual molecules. In the A2 RNA trafficking pathway rules of engagement governing interactions of hnRNP A2 with different binding partners provide the basis for polarity of movement of intermediates along the pathway
- …
