84 research outputs found
Characterizing gradients in cortical connectivity: Assessment and applications of manifold learning
Structural Variability Across the Primate Brain:A Cross-Species Comparison
A large amount of variability exists across human brains; revealed initially on a small scale by postmortem studies and, more recently, on a larger scale with the advent of neuroimaging. Here we compared structural variability between human and macaque monkey brains using grey and white matter magnetic resonance imaging measures. The monkey brain was overall structurally as variable as the human brain, but variability had a distinct distribution pattern, with some key areas showing high variability. We also report the first evidence of a relationship between anatomical variability and evolutionary expansion in the primate brain. This suggests a relationship between variability and stability, where areas of low variability may have evolved less recently and have more stability, while areas of high variability may have evolved more recently and be less similar across individuals. We showed specific differences between the species in key areas, including the amount of hemispheric asymmetry in variability, which was left-lateralized in the human brain across several phylogenetically recent regions. This suggests that cerebral variability may be another useful measure for comparison between species and may add another dimension to our understanding of evolutionary mechanisms
Predictive coding during action observation - A depth-resolved intersubject functional correlation study at 7T
While the brain regions involved in action observation are relatively well documented in humans and primates, how these regions communicate to help understand and predict actions remains poorly understood. Traditional views emphasized a feed-forward architecture in which visual features are organized into increasingly complex representations that feed onto motor programs in parietal and then premotor cortices where the matching of observed actions upon the observer's own motor programs contributes to action understanding. Predictive coding models place less emphasis on feed-forward connections and propose that feed-back connections from premotor regions back to parietal and visual neurons represent predictions about upcoming actions that can supersede visual inputs when actions become predictable, with visual input then merely representing prediction errors. Here we leverage the notion that feed-back connections target specific cortical layers to help adjudicate across these views. Specifically, we test whether observing sequences of hand actions in their natural order, which permits participants to predict upcoming actions, triggers more feed-back input to parietal regions than seeing the same actions in a scrambled sequence that hinders making predictions. Using submillimeter fMRI acquisition at 7T, we find that watching predictable sequences triggers more action-related activity (as measured using intersubject functional correlation) in the parietal cortical area PFt at depths receiving feed-back connections (layers III and V/VI) than watching the exact same actions in scrambled and hence unpredictable sequence. In addition, functional connectivity analysis performed using intersubject functional connectivity confirms that these increased action-related signals in PFt could originate from ventral premotor region BA44. This data showcases the utility of intersubject functional correlation in combination with 7T MRI to explore the architecture of social cognition under more naturalistic conditions, and provides evidence for models that emphasize the importance of feed-back connections in action prediction
Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid
The activity and survival of retinal photoreceptors depend on support functions performed by the retinal pigment epithelium (RPE) and on oxygen and nutrients delivered by blood vessels in the underlying choroid. By combining single-cell and bulk RNA sequencing, we categorized mouse RPE/choroid cell types and characterized the tissue-specific transcriptomic features of choroidal endothelial cells. We found that choroidal endothelium adjacent to the RPE expresses high levels of Indian Hedgehog and identified its downstream target as stromal GLI1+ mesenchymal stem cell-like cells. In vivo genetic impairment of Hedgehog signaling induced significant loss of choroidal mast cells, as well as an altered inflammatory response and exacerbated visual function defects after retinal damage. Our studies reveal the cellular and molecular landscape of adult RPE/choroid and uncover a Hedgehog-regulated choroidal immunomodulatory signaling circuit. These results open new avenues for the study and treatment of retinal vascular diseases and choroid-related inflammatory blinding disorders.Funding for this study was provided by National Institutes of Health grants EY08538 and GM34107 (E. Rodriguez-Boulan); EY027038 (R.F. Mullins); 1R21CA224391-01A1 (J.H. Zippin); and 1R01CA194547, 1U24CA210989, and P50CA211024 (O. Elemento); National Cancer Institute grant R01CA192176 and cancer center support grant P30 CA008748-48 (A.L. Joyner); Comunidad Autónoma de Madrid grant 2017-T1/BMD-5247 (I. Benedicto); Agencia Nacional Argentina de Promoción Cient´ıfica y Tecnológica grant PICT 2014-3687 and Fundación Sales (G.A. Rabinovich); a Pew Latin American Fellowship (G.L. Lehmann); Calder Research Scholar Award Vitiligo/Pigment Cell Disorders (J.H. Zippin); Starr Foundation Tri-Institutional Stem Cell Initiative award 2013-028; NYSTEM contract C32596GG; and Research to Prevent Blindness and Dyson Foundation departmental grants. The CNIC is supported by the Instituto de Salud Carlos III, the Ministerio de Ciencia e Innovación, and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S
Amygdala Atrophy and Its Functional Disconnection with the Cortico-Striatal-Pallidal-Thalamic Circuit in Major Depressive Disorder in Females
Background
Major depressive disorder (MDD) is approximately twice as common in females than males. Furthermore, female patients with MDD tend to manifest comorbid anxiety. Few studies have explored the potential anatomical and functional brain changes associated with MDD in females. Therefore, the purpose of the present study was to investigate the anatomical and functional changes underlying MDD in females, especially within the context of comorbid anxiety.
Methods
In this study, we recruited antidepressant-free females with MDD (N = 35) and healthy female controls (HC; N = 23). The severity of depression and anxiety were evaluated by the Hamilton Depression Rating Scale (HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A), respectively. Structural and resting-state functional images were acquired on a Siemens 3.0 Tesla scanner. We compared the structural volumetric differences between patients and HC with voxel-based morphometry (VBM) analyses. Seed-based voxel-wise correlative analyses were used to identify abnormal functional connectivity. Regions with structural deficits showed a significant correlation between gray matter (GM) volume and clinical variables that were selected as seeds. Furthermore, voxel-wise functional connectivity analyses were applied to identify the abnormal connectivity relevant to seed in the MDD group.
Results
Decreased GM volume in patients was observed in the insula, putamen, amygdala, lingual gyrus, and cerebellum. The right amygdala was selected as a seed to perform connectivity analyses, since its GM volume exhibited a significant correlation with the clinical anxiety scores. We detected regions with disrupted connectivity relevant to seed primarily within the cortico-striatal-pallidal-thalamic circuit.
Conclusions
Amygdaloid atrophy, as well as decreased functional connectivity between the amygdala and the cortico-striatal-pallidal-thalamic circuit, appears to play a role in female MDD, especially in relation to comorbid anxiety
Neuropsychological patterns following lesions of the anterior insula in a series of forty neurosurgical patients
In the present study we investigated the effects of lesions affecting mainly the anterior insula in a series of 22 patients with lesions in the left hemisphere (LH), and 18 patients with lesions involving the right hemisphere (RH). The site of the lesion was established by performing an overlap of the probabilistic cytoarchitectonic maps of the posterior insula. Here we report the patients\u2019 neuropsychological profile and an analysis of their pre-surgical symptoms. We found that pre-operatory symptoms significantly differed in patients depending on whether the lesion affected the right or left insula and a strict parallelism between the patterns emerged in the pre-surgery symptoms analysis, and the patients\u2019 cognitive profile. In particular, we found that LH patients showed cognitive deficits. By contrast, the RH patients, with the exception of one case showing an impaired performance at the visuo-spatial planning test were within the normal range in performing all the tests. In addition, a sub-group of patients underwent to the post-surgery follow-up examination
Atypically high influence of subcortical activity on primary sensory regions in autism
Background: Hypersensitivity, stereotyped behaviors and attentional problems in autism spectrum disorder (ASD) are compatible with inefficient filtering of undesired or irrelevant sensory information at early stages of neural processing. This could stem from the persistent overconnectivity between primary sensory regions and deep brain nuclei in both children and adults with ASD – as reported by several previous studies – which could reflect a decreased or arrested maturation of brain connectivity. However, it has not yet been investigated whether this overconnectivity can be modelled as an excessive directional influence of subcortical brain activity on primary sensory cortical regions in ASD, with respect to age-matched typically developing (TD) individuals. Methods: To this aim, we used dynamic causal modelling to estimate (1) the directional influence of subcortical activity on cortical processing and (2) the functional segregation of primary sensory cortical regions from subcortical activity in 166 participants with ASD and 193 TD participants from the Autism Brain Imaging Data Exchange (ABIDE). We then specifically tested the hypothesis that the age-related changes of these indicators of brain connectivity would differ between the two groups. Results: We found that in TD participants age was significantly associated with decreased influence of subcortical activity on cortical processing, paralleled by an increased functional segregation of cortical sensory processing from subcortical activity. Instead these effects were highly reduced and mostly absent in ASD participants, suggesting a delayed or arrested development of the segregation between subcortical and cortical sensory processing in ASD. Conclusion: This atypical configuration of subcortico-cortical connectivity in ASD can result in an excessive amount of unprocessed sensory input relayed to the cortex, which is likely to impact cognitive functioning in everyday situations where it is beneficial to limit the influence of basic sensory information on cognitive processing, such as activities requiring focused attention or social interactions
Use of an Antropomorphous Robot in Polishig Cells
The paper addresses the implementation of an automatic procedure which uses an antropomorphous robot for polishing application
Pathophysiological concepts in mild traumatic brain injury: diffusion tensor imaging related to acute perfusion CT imaging.
Fitness und Gesundheit : Entwicklung und Zusammenhänge im mittleren und höheren Erwachsenealter
Importance Individuals with autism spectrum disorder (ASD) exhibit severe difficulties in social interaction, motor coordination, behavioral flexibility, and atypical sensory processing, with considerable interindividual variability. This heterogeneous set of symptoms recently led to investigating the presence of abnormalities in the interaction across large-scale brain networks. To date, studies have focused either on constrained sets of brain regions or whole-brain analysis, rather than focusing on the interaction between brain networks.Objectives To compare the intrinsic functional connectivity between brain networks in a large sample of individuals with ASD and typically developing control subjects and to estimate to what extent group differences would predict autistic traits and reflect different developmental trajectories.Design, Setting, and Participants We studied 166 male individuals (mean age, 17.6 years; age range, 7-50 years) diagnosed as having DSM-IV-TR autism or Asperger syndrome and 193 typical developing male individuals (mean age, 16.9 years; age range, 6.5-39.4 years) using resting-state functional magnetic resonance imaging (MRI). Participants were matched for age, IQ, head motion, and eye status (open or closed) in the MRI scanner. We analyzed data from the Autism Brain Imaging Data Exchange (ABIDE), an aggregated MRI data set from 17 centers, made public in August 2012.Main Outcomes and Measures We estimated correlations between time courses of brain networks extracted using a data-driven method (independent component analysis). Subsequently, we associated estimates of interaction strength between networks with age and autistic traits indexed by the Social Responsiveness Scale.Results Relative to typically developing control participants, individuals with ASD showed increased functional connectivity between primary sensory networks and subcortical networks (thalamus and basal ganglia) (all t ≥ 3.13, P < .001 corrected). The strength of such connections was associated with the severity of autistic traits in the ASD group (all r ≥ 0.21, P < .0067 corrected). In addition, subcortico-cortical interaction decreased with age in the entire sample (all r ≤ −0.09, P < .012 corrected), although this association was significant only in typically developing participants (all r ≤ −0.13, P < .009 corrected).Conclusions and Relevance Our results showing ASD-related impairment in the interaction between primary sensory cortices and subcortical regions suggest that the sensory processes they subserve abnormally influence brain information processing in individuals with ASD. This might contribute to the occurrence of hyposensitivity or hypersensitivity and of difficulties in top-down regulation of behavior
- …
