1,922 research outputs found
Controlled deflection of cold atomic clouds and of Bose-Einstein condensates
We present a detailed, realistic proposal and analysis of the implementation
of a cold atom deflector using time-dependent far off-resonance optical guides.
An analytical model and numerical simulations are used to illustrate its
characteristics when applied to both non-degenerate atomic ensembles and to
Bose-Einstein condensates. Using for all relevant parameters values that are
achieved with present technology, we show that it is possible to deflect almost
entirely an ensemble of Rb atoms falling in the gravity field. We
discuss the limits of this proposal, and illustrate its robustness against
non-adiabatic transitions
Effect of picosecond strain pulses on thin layers of the ferromagnetic semiconductor (Ga,Mn)(As,P)
The effect of picosecond acoustic strain pulses (ps-ASP) on a thin layer of
(Ga,Mn)As co-doped with phosphorus was probed using magneto-optical Kerr effect
(MOKE). A transient MOKE signal followed by low amplitude oscillations was
evidenced, with a strong dependence on applied magnetic field, temperature and
ps-ASP amplitude. Careful interferometric measurement of the layer's thickness
variation induced by the ps-ASP allowed us to model very accurately the
resulting signal, and interpret it as the strain modulated reflectivity
(differing for probe polarizations), independently from dynamic
magnetization effects.Comment: 6 pages, 5 figure
Theoretical study of a cold atom beam splitter
A theoretical model is presented for the study of the dynamics of a cold
atomic cloud falling in the gravity field in the presence of two crossing
dipole guides. The cloud is split between the two branches of this laser guide,
and we compare experimental measurements of the splitting efficiency with
semiclassical simulations. We then explore the possibilities of optimization of
this beam splitter. Our numerical study also gives access to detailed
information, such as the atom temperature after the splitting
Bose-Einstein condensation in dark power-law laser traps
We investigate theoretically an original route to achieve Bose-Einstein
condensation using dark power-law laser traps. We propose to create such traps
with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling
their azimuthal order allows for the exploration of a multitude of
power-law trapping situations in one, two and three dimensions, ranging from
the usual harmonic trap to an almost square-well potential, in which a
quasi-homogeneous Bose gas can be formed. The usual cigar-shaped and
disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take
the generic form of a "finger" or of a "hockey puck" in such Laguerre-Gaussian
traps. In addition, for a fixed atom number, higher transition temperatures are
obtained in such configurations when compared with a harmonic trap of same
volume. This effect, which results in a substantial acceleration of the
condensation dynamics, requires a better but still reasonable focusing of the
Laguerre-Gaussian beams
Conceptually driven and visually rich tasks in texts and teaching practice: the case of infinite series
The study we report here examines parts of what Chevallard calls the institutional dimension of the students’ learning experience of a relatively under-researched, yet crucial, concept in Analysis, the concept of infinite series. In particular, we examine how the concept is introduced to students in texts and in teaching practice. To this purpose, we employ Duval's Theory of Registers of Semiotic Representation towards the analysis of 22 texts used in Canada and UK post-compulsory courses. We also draw on interviews with in-service teachers and university lecturers in order to discuss briefly teaching practice and some of their teaching suggestions. Our analysis of the texts highlights that the presentation of the concept is largely a-historical, with few graphical representations, few opportunities to work across different registers (algebraic, graphical, verbal), few applications or intra-mathematical references to the concept's significance and few conceptually driven tasks that go beyond practising with the application of convergence tests and prepare students for the complex topics in which the concept of series is implicated. Our preliminary analysis of the teacher interviews suggests that pedagogical practice often reflects the tendencies in the texts. Furthermore, the interviews with the university lecturers point at the pedagogical potential of: illustrative examples and evocative visual representations in teaching; and, student engagement with systematic guesswork and writing explanatory accounts of their choices and applications of convergence tests
Theoretical analysis of the implementation of a quantum phase gate with neutral atoms on atom chips
We present a detailed, realistic analysis of the implementation of a proposal
for a quantum phase gate based on atomic vibrational states, specializing it to
neutral rubidium atoms on atom chips. We show how to create a double--well
potential with static currents on the atom chips, using for all relevant
parameters values that are achieved with present technology. The potential
barrier between the two wells can be modified by varying the currents in order
to realize a quantum phase gate for qubit states encoded in the atomic external
degree of freedom. The gate performance is analyzed through numerical
simulations; the operation time is ~10 ms with a performance fidelity above
99.9%. For storage of the state between the operations the qubit state can be
transferred efficiently via Raman transitions to two hyperfine states, where
its decoherence is strongly inhibited. In addition we discuss the limits
imposed by the proximity of the surface to the gate fidelity.Comment: 9 pages, 5 color figure
A hybrid metal/semiconductor electron pump for quantum metrology
Electron pumps capable of delivering a current higher than 100pA with
sufficient accuracy are likely to become the direct mise en pratique of the
possible new quantum definition of the ampere. Furthermore, they are essential
for closing the quantum metrological triangle experiment which tests for
possible corrections to the quantum relations linking e and h, the electron
charge and the Planck constant, to voltage, resistance and current. We present
here single-island hybrid metal/semiconductor transistor pumps which combine
the simplicity and efficiency of Coulomb blockade in metals with the
unsurpassed performances of silicon switches. Robust and simple pumping at
650MHz and 0.5K is demonstrated. The pumped current obtained over a voltage
bias range of 1.4mV corresponds to a relative deviation of 5e-4 from the
calculated value, well within the 1.5e-3 uncertainty of the measurement setup.
Multi-charge pumping can be performed. The simple design fully integrated in an
industrial CMOS process makes it an ideal candidate for national measurement
institutes to realize and share a future quantum ampere
Iterative Approximate Consensus in the presence of Byzantine Link Failures
This paper explores the problem of reaching approximate consensus in
synchronous point-to-point networks, where each directed link of the underlying
communication graph represents a communication channel between a pair of nodes.
We adopt the transient Byzantine link failure model [15, 16], where an
omniscient adversary controls a subset of the directed communication links, but
the nodes are assumed to be fault-free.
Recent work has addressed the problem of reaching approximate consen- sus in
incomplete graphs with Byzantine nodes using a restricted class of iterative
algorithms that maintain only a small amount of memory across iterations [22,
21, 23, 12]. However, to the best of our knowledge, we are the first to
consider approximate consensus in the presence of Byzan- tine links. We extend
our past work that provided exact characterization of graphs in which the
iterative approximate consensus problem in the presence of Byzantine node
failures is solvable [22, 21]. In particular, we prove a tight necessary and
sufficient condition on the underlying com- munication graph for the existence
of iterative approximate consensus algorithms under transient Byzantine link
model. The condition answers (part of) the open problem stated in [16].Comment: arXiv admin note: text overlap with arXiv:1202.609
Monitoring Partially Synchronous Distributed Systems using SMT Solvers
In this paper, we discuss the feasibility of monitoring partially synchronous
distributed systems to detect latent bugs, i.e., errors caused by concurrency
and race conditions among concurrent processes. We present a monitoring
framework where we model both system constraints and latent bugs as
Satisfiability Modulo Theories (SMT) formulas, and we detect the presence of
latent bugs using an SMT solver. We demonstrate the feasibility of our
framework using both synthetic applications where latent bugs occur at any time
with random probability and an application involving exclusive access to a
shared resource with a subtle timing bug. We illustrate how the time required
for verification is affected by parameters such as communication frequency,
latency, and clock skew. Our results show that our framework can be used for
real-life applications, and because our framework uses SMT solvers, the range
of appropriate applications will increase as these solvers become more
efficient over time.Comment: Technical Report corresponding to the paper accepted at Runtime
Verification (RV) 201
The propensity of molecules to spatially align in intense light fields
The propensity of molecules to spatially align along the polarization vector
of intense, pulsed light fields is related to readily-accessible parameters
(molecular polarizabilities, moment of inertia, peak intensity of the light and
its pulse duration). Predictions can now be made of which molecules can be
spatially aligned, and under what circumstances, upon irradiation by intense
light. Accounting for both enhanced ionization and hyperpolarizability, it is
shown that {\it all} molecules can be aligned, even those with the smallest
static polarizability, when subjected to the shortest available laser pulses
(of sufficient intensity).Comment: 8 pages, 4 figures, to be submitted to PR
- …
