192 research outputs found

    Thermostimulated Sol–Gel Transition in Suspensions of Sulfate-Zirconium Oxychloride

    Get PDF
    The sol-gel transition of an aqueous solution of zirconium oxychloride modified by sulfuric acid (Zr:S 3:1) has been studied by small-angle X-ray scattering (SAXS) performed in situ during one cycle of heating and cooling between 298 and 358 K. The experimental SAXS curves exhibit three regions, at small, medium and high q values, characteristic of the Guinier, 'fractal' and Pored regimes, respectively. The value of 5.5 Angstrom for the radii of the primary particles, obtained from the cross over of the Pored and fractal regimes, is consistent with the size of the inner core of the polynuclear Zr18O4(OH)(38.8)(SO4)(12.6).33H(2)O molecule. These molecules aggregate as small clusters (31 Angstrom) of fractal structure, with a dimensionality D = 2.16 in the sol. The value of the fractal dimensionality, which is characteristic of ideal branched polymers, decreases during heating, attaining a value of 2.0, characteristic of swollen polymers. Above the critical temperature (329 K), the average size of aggregates increases abruptly to 200 Angstrom and the fractal dimensionality decreases to D = 1.75, this value being characteristic of a cluster-cluster aggregation process.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP, Inst Chem, Araraquara, SP, BrazilCNPq, Natl Synchrotron Light Lab, Campinas, SP, BrazilUSP, Inst Phys, BR-09500900 São Paulo, BrazilUNESP, Inst Chem, Araraquara, SP, Brazi

    Barley beta-glucan promotes MnSOD expression and enhances angiogenesis under oxidative microenvironment

    Get PDF
    Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% ± 2% compared to control and by 50% ± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2-) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2-, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure

    From Integrated Survey to Semantically-Enriched Models: An H-BIM Pipeline for Developing Descriptive Systems to Understand Architectural Heritage

    Get PDF
    The paper presents an operational methodology based on the interaction between digital survey, point cloud segmentation, formal encoding, and parametric modelling, applied to three fortified portals associated with the work of Michele Sanmicheli and his cultural legacy. From photogrammetric and laser scanning surveys, the point clouds were subjected to macro- and micro-segmentation processes, to encode architectural types according to compositional and hierarchical logics. The subsequent parametric modelling is grounded in the abstraction of profiles and the construction of nested families within a BIM environment, encoded and structured according to the principles of Sanmichelian architecture. Through a systematic comparison between ideal models and surveyed reality, it was possible to adapt geometries to the specificities of the built elements, while preserving their original proportional rules. Integrating topologically complex meshes through visual programming techniques enabled the accurate representation of decorative features. The results highlight the potential of this operational methodology in constructing flexible, proportionally coherent information systems aligned with the architectural lexicon, offering new tools for documenting and enhancing fortified heritage

    Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes

    Get PDF
    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9- sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient biallelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo

    A "Candidate-Interactome" Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis

    Get PDF
    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms

    Prevalence of Salmonella enterica and Listeria monocytogenes contamination in foods of animal origin in Italy.

    Get PDF
    The present survey collected and analyzed the results of routine testing for Salmonella enterica and Listeria monocytogenes on foods of animal origin submitted for official controls in Italy during 2001 to 2002. Salmonella was detected in 2.2% of 71,643 food samples examined, and the isolation rates ranged from 9.9% for raw poultry meat to less than 0.1% for dairy products. Isolation rates were also high in raw pork (4.9%) and processed meats (5.3%), which often involved pork. Low rates were observed in seafood (0.5%) and in ready-to-eat foods, such as grocery products (0.7%) and ice creams (0.1%). Serotyping showed that approximately 50% of the isolates belonged to the serotypes most commonly isolated from humans in Italy, thus confirming that most cases of human salmonellosis have a foodborne origin. Levels of L. monocytogenes were higher than what is accepted by the current regulation in 2.4% of 42,300 food samples. The positivity rates ranged from 10.3% in raw pork to none in eggs and egg products. Contamination rates were higher in other meat products (between 2 and 5%) and fish (6.5%) than in cheeses (1.1%) and other dairy products (0.6%). Routine control activities on the microbial contamination of foods can generate data with statistical and epidemiological value. Such data can be used as a basis for estimating the exposure of consumers to foodborne pathogens, following the trends of contamination over time, and evaluating the effects of control measures on the contamination of food

    Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling

    Get PDF
    Bcl9 and Pygopus (Pygo) are obligate Wnt/β-catenin cofactors in Drosophila, yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, β-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the β-catenin–BCL9–Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators. Our work highlights BCL9 and Pygo as selective β-catenin cofactors in a subset of canonical Wnt responses during vertebrate development. Moreover, our results implicate alterations in BCL9 and BCL9L in human congenital heart defects

    A Geologically Based Indoor-Radon Potential Map of Kentucky

    Get PDF
    We combined 71,930 short-term (median duration 4 days) home radon test results with 1:24,000-scale bedrock geologic map coverage of Kentucky to produce a statewide geologically based indoor-radon potential map. The test results were positively skewed with a mean of 266 Bq/m3, median of 122 Bq/m3, and 75th percentile of 289 Bq/m3. We identified 106 formations with ≥10 test results. Analysis of results from 20 predominantly monolithologic formations showed indoor-radon concentrations to be positively skewed on a formation-by-formation basis, with a proportional relationship between sample means and standard deviations. Limestone (median 170 Bq/m3) and dolostone (median 130 Bq/m3) tended to have higher indoor-radon concentrations than siltstones and sandstones (median 67 Bq/m3) or unlithified surficial deposits (median 63 Bq/m3). Individual shales had median values ranging from 67 to 189 Bq/m3; the median value for all shale values was 85 Bq/m3. Percentages of values falling above the U.S. Environmental Protection Agency (EPA) action level of 148 Bq/m3 were sandstone and siltstone: 24%, unlithified clastic: 21%, dolostone: 46%, limestone: 55%, and shale: 34%. Mississippian limestones, Ordovician limestones, and Devonian black shales had the highest indoor-radon potential values in Kentucky. Indoor-radon test mean values for the selected formations were also weakly, but statistically significantly, correlated with mean aeroradiometric uranium concentrations. To produce a map useful to nonspecialists, we classified each of the 106 formations into five radon-geologic classes on the basis of their 75th percentile radon concentrations. The statewide map is freely available through an interactive internet map service
    corecore