592 research outputs found
Reliable Self-Deployment of Cloud Applications
International audienceCloud applications consist of a set of interconnected software elements distributed over several virtual machines, themselves hosted on remote physical servers. Most existing solutions for deploying such applications require human intervention to configure parts of the system, do not respect functional dependencies among elements that must be respected when starting them, and do not handle virtual machine failures that can occur when deploying an application. This paper presents a self-deployment protocol that was designed to automatically configure a set of software elements to be deployed on different virtual machines. This protocol works in a decentralized way, i.e., there is no need for a centralized server. It also starts the software elements in a certain order, respecting important architectural invariants. This protocol supports virtual machine and network failures, and always succeeds in deploying an application when faced with a finite number of failures. Designing such highly parallel management protocols is difficult, therefore formal modeling techniques and verification tools were used for validation purposes. The protocol was implemented in Java and was used to deploy industrial applications
Young and Early Career Investigators: Report from a Global HIV Vaccine Enterprise Working Group
The scientific challenges facing HIV-1 vaccine development are unprecedented in the history of vaccinology. As a result, investigators, funders, and other stakeholders generally agree that “game-changing” ideas are required. While innovation can certainly arise from investigators at all career stages, young and early-career investigators, defined as those under 40 years of age or within 10 years of their final degree or clinical training, are especially key contributors of novel and transformative ideas. Young and early-career investigators bring energy, enthusiasm, and fresh perspectives that are unbiased by prevailing dogma and that are essential to scientific progress
Antiproton beam parameters measurement by a new digital-receiver-based system
The Antiproton Decelerator (AD) provides the users with very low intensity beams, in the 107 particles range, hence prompting the development of an innovative measuring system, which was completed in early 2000. This system measures antiproton beam intensity for bunched and debunched beams, together with momentum spread and mean momentum for debunched beams. It uses a state-of-the-art Digital Receiver board, which processes data obtained from two ultra-low-noise, wide-band AC beam transformers. These have a combined bandwidth in the range 0.02 MHz - 30 MHz and are used to measure AC beam current modulation. For bunched beams, the intensity is obtained by measuring the amplitude of the fundamental and second RF Fourier components. On the magnetic plateaus the beam is debunched for stochastic or electron cooling and longitudinal beam properties (intensity, momentum spread and mean momentum) are measured by FFT-based spectral analysis of Schottky signals. The system provides real-time information characterising the machine performance; it has been used for troubleshooting and to fine-tune the AD, thus allowing further improved performance. This system has been operating since May 2000 and providing beam intensity data to the users on a routine basis since late 2000. A dedicated software package was expressly developed to take care of the control, data acquisition and processing phases. It consists of three main codes, namely a GUI, a Real Time Task and a Low Level Code. This report gives an overview of both the hardware and software developed
Beam Measurement Systems for the CERN Antiproton Decelerator (AD)
The new, low-energy antiproton physics facility at CERN has been successfully commissioned and has been delivering decelerated antiprotons at 100 MeV/c since July 2000. The AD consists of one ring where the 3.5 GeV/c antiprotons produced from a production target are injected, rf manipulated, stochastically cooled, decelerated (with further stages involving additional stochastic and electron cooling and rf manipulation) and extracted at 100 MeV/c. While proton test beams of sufficient intensity could be used for certain procedures in AD commissioning, this was not possible for setting-up and routine operation. Hence, special diagnostics systems had to be developed to obtain the beam and accelerator characteristics using the weak antiproton beams of a few 10E7 particles at all momenta from 3.5 GeV/c down to 100 MeV/c. These include systems for position measurement, intensity, beam size measurements using transverse aperture limiters and scintillators and Schottky-based tools. This paper gives an overall view of these systems and their usage
Commissioning and First Operation of the Antiproton Decelerator (AD)
The Antiproton Decelerator (AD) is a simplified source of antiprotons which provides low energy antiprotons for experiments, replacing four machines: AC (Antiproton Collector), AA (Antiproton Accumulator), PS and LEAR (Low Energy Antiproton Ring), shutdown in 1996. The former AC was modified to include deceleration and electron cooling. The AD started operation in July 2000 and has since delivered cooled beam at 100 MeV/c (kinetic energy of 5.3 MeV) to 3 experiments (ASACUSA, ATHENA and ATRAP) for 1500 h. The flux (up to 2.5´105pbars /s delivered in short pulses of 330 ns every 110 s) and the quality of the ejected beam are not far from the design specifications. A linear RF Quadrupole Decelerator (RFQD) was commissioned in November 2000 to post-decelerate the beam for ASACUSA from 5.3 MeV to about 15 keV. Problems encountered in converting the fixed energy AC into a decelerating machine will be outlined, and the present status of the AD, including the performance of the cooling systems and the special diagnostics to cope with beams of less than 107 pbars, will be reviewed. Possible future developments will be sketche
CTF3 Design Report: Preliminary Phase
The design of CLIC is based on a two-beam scheme, where the short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP. In the first stage of the project, the "Preliminary Phase", the existing LIL linac and the EPA ring, both modified to suit the new requirements, are used to investigate the technique of frequency multiplication by means of interleaving bunches from subsequent trains. This report describes the design of this phase
The Views of Patients with Isolated Rapid Eye Movement Sleep Behavior Disorder on Risk Disclosure
Quenching of Tryptophan Fluorescence in Various Proteins by a Series of Small Nickel Complexes
A series of twelve anionic, cationic, and neutral nickel (II) complexes have been synthesized and characterized. The interaction of these complexes with bovine serum albumin (BSA), human serum albumin (HSA), lysozyme (Lyso), and tryptophan (Trp) has been studied using steady-state fluorescence spectroscopy. Dynamic and static quenching constants have been calculated, and the role played in quenching by the ligand and complex charge investigated. The nickel complexes showed selectivity towards the different proteins based on the environment surrounding the Trp residue(s). Only small neutral complexes with hydrophobic ligands effectively quenched protein fluorescence via static quenching, with association constants ranging from 102 M-1 (free Trp) to 1010 M-1 (lysozyme), indicating a spontaneous and thermodynamically favorable interaction. The number of binding sites, on average, was determined to be one in BSA, HSA and free Trp, and two in lysozyme
The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context?
International audienceIn most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1
Emerging Pharmacologic Targets in Cerebral Cavernous Malformation and Potential Strategies to Alter the Natural History of a Difficult Disease: A Review
- …
