1,054 research outputs found
Convergence and multiplicities for the Lempert function
Given a domain , the Lempert function is a
functional on the space Hol (\D,\Omega) of analytic disks with values in
, depending on a set of poles in . We generalize its definition
to the case where poles have multiplicities given by local indicators (in the
sense of Rashkovskii's work) to obtain a function which still dominates the
corresponding Green function, behaves relatively well under limits, and is
monotonic with respect to the indicators. In particular, this is an improvement
over the previous generalization used by the same authors to find an example of
a set of poles in the bidisk so that the (usual) Green and Lempert functions
differ.Comment: 24 pages; many typos corrected thanks to the referee of Arkiv for
Matemati
Performance of the Two Aerogel Cherenkov Detectors of the JLab Hall A Hadron Spectrometer
We report on the design and commissioning of two silica aerogel Cherenkov
detectors with different refractive indices. In particular, extraordinary
performance in terms of the number of detected photoelectrons was achieved
through an appropriate choice of PMT type and reflector, along with some design
considerations. After four years of operation, the number of detected
photoelectrons was found to be noticeably reduced in both detectors as a result
of contamination, yellowing, of the aerogel material. Along with the details of
the set-up, we illustrate the characteristics of the detectors during different
time periods and the probable causes of the contamination. In particular we
show that the replacement of the contaminated aerogel and parts of the
reflecting material has almost restored the initial performance of the
detectors.Comment: 18 pages, 9 Figures, 4 Tables, 44 Reference
Pluricomplex Green and Lempert functions for equally weighted poles
For a domain in , the pluricomplex Green function with
poles is defined as .
When there is only one pole, or two poles in the unit ball, it turns out to be
equal to the Lempert function defined from analytic disks into by . It is known
that we always have . In the more general case where we
allow weighted poles, there is a counterexample to equality due to Carlehed and
Wiegerinck, with equal to the bidisk.
Here we exhibit a counterexample using only four distinct equally weighted
poles in the bidisk. In order to do so, we first define a more general notion
of Lempert function "with multiplicities", analogous to the generalized Green
functions of Lelong and Rashkovskii, then we show how in some examples this can
be realized as a limit of regular Lempert functions when the poles tend to each
other. Finally, from an example where in the case of
multiple poles, we deduce that distinct (but close enough) equally weighted
poles will provide an example of the same inequality. Open questions are
pointed out about the limits of Green and Lempert functions when poles tend to
each other.Comment: 25 page
A comparison of FreeSurfer-generated data with and without manual intervention
This paper examined whether FreeSurfer - generated data differed between a fully – automated, unedited pipeline and an edited pipeline that included the application of control points to correct errors in white matter segmentation. In a sample of 30 individuals, we compared the summary statistics of surface area, white matter volumes, and cortical thickness derived from edited and unedited datasets for the 34 regions of interest (ROIs) that FreeSurfer (FS) generates. To determine whether applying control points would alter the detection of significant differences between patient and typical groups, effect sizes between edited and unedited conditions in individuals with the genetic disorder, 22q11.2 deletion syndrome (22q11DS) were compared to neurotypical controls. Analyses were conducted with data that were generated from both a 1.5 tesla and a 3 tesla scanner. For 1.5 tesla data, mean area, volume, and thickness measures did not differ significantly between edited and unedited regions, with the exception of rostral anterior cingulate thickness, lateral orbitofrontal white matter, superior parietal white matter, and precentral gyral thickness. Results were similar for surface area and white matter volumes generated from the 3 tesla scanner. For cortical thickness measures however, seven edited ROI measures, primarily in frontal and temporal regions, differed significantly from their unedited counterparts, and three additional ROI measures approached significance. Mean effect sizes for edited ROIs did not differ from most unedited ROIs for either 1.5 or 3 tesla data. Taken together, these results suggest that although the application of control points may increase the validity of intensity normalization and, ultimately, segmentation, it may not affect the final, extracted metrics that FS generates. Potential exceptions to and limitations of these conclusions are discussed
Probing the high momentum component of the deuteron at high Q^2
The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was
measured over a kinematical range that made it possible to study this reaction
for a set of fixed missing momenta as a function of the neutron recoil angle
theta_nq and to extract missing momentum distributions for fixed values of
theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg)
recent calculations, which predict that final state interactions are small,
agree reasonably well with the experimental data. Therefore these experimental
reduced cross sections provide direct access to the high momentum component of
the deuteron momentum distribution in exclusive deuteron
electro-disintegration.Comment: 5 pages, 2 figure
Majorana: from atomic and molecular, to nuclear physics
In the centennial of Ettore Majorana's birth (1906-1938?), we re-examine some
aspects of his fundamental scientific production in atomic and molecular
physics, including a not well known short communication. There, Majorana
critically discusses Fermi's solution of the celebrated Thomas-Fermi equation
for electron screening in atoms and positive ions. We argue that some of
Majorana's seminal contributions in molecular physics already prelude to the
idea of exchange interactions (or Heisenberg-Majorana forces) in his later
workson theoretical nuclear physics. In all his papers, he tended to emphasize
the symmetries at the basis of a physical problem, as well as the limitations,
rather than the advantages, of the approximations of the method employed.Comment: to appear in Found. Phy
Exclusive electroproduction of K+ Lambda and K+ Sigma^0 final states at Q^2 = 0.030-0.055 (GeV/c)^2
Cross section measurements of the exclusive p(e,e'K+)Lambda,Sigma^0
electroproduction reactions have been performed at the Mainz Microtron MAMI in
the A1 spectrometer facility using for the first time the Kaos spectrometer for
kaon detection. These processes were studied in a kinematical region not
covered by any previous experiment. The nucleon was probed in its third
resonance region with virtual photons of low four-momenta, Q^2= 0.030-0.055
(GeV/c)^2. The MAMI data indicate a smooth transition in Q^2 from
photoproduction to electroproduction cross sections. Comparison with
predictions of effective Lagrangian models based on the isobar approach reveal
that strong longitudinal couplings of the virtual photon to the N* resonances
can be excluded from these models.Comment: 16 pages, 7 figure
Probing Quark-Gluon Interactions with Transverse Polarized Scattering
We have extracted QCD matrix elements from our data on double polarized
inelastic scattering of electrons on nuclei. We find the higher twist matrix
element \tilde{d_2}, which arises strictly from quark- gluon interactions, to
be unambiguously non zero. The data also reveal an isospin dependence of higher
twist effects if we assume that the Burkhardt-Cottingham Sum rule is valid. The
fundamental Bjorken sum rule obtained from the a0 matrix element is satisfied
at our low momentum transfer.Comment: formerly "Nachtmann Moments of the Proton and Deuteron Spin Structure
Functions
Low Q^2 measurements of the proton form factor ratio
We present an updated extraction of the proton electromagnetic form factor
ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial
distribution of the proton, and precise measurements can be used to constrain
models of the proton. An improved selection of the elastic events and reduced
background contributions yielded a small systematic reduction in the ratio mu_p
G_E/G_M compared to the original analysis.Comment: 12 pages, 5 figures, archival paper for proton form factor extraction
from Jefferson Lab "LEDEX" experimen
The Proton Elastic Form Factor Ratio at Low Momentum Transfer
High precision measurements of the proton elastic form factor ratio have been
made at four-momentum transfers, Q^2, between 0.2 and 0.5 GeV^2. The new data,
while consistent with previous results, clearly show a ratio less than unity
and significant differences from the central values of several recent
phenomenological fits. By combining the new form-factor ratio data with an
existing cross-section measurement, one finds that in this Q^2 range the
deviation from unity is primarily due to GEp being smaller than the dipole
parameterization.Comment: 5 pages, 2 figure
- …
