153 research outputs found

    Hypericum hircinum L.: botany, traditional uses, phytochemistry, and pharmacological properties

    Get PDF
    Hypericum hircinum L., commonly known as goat St. John’s wort or stinking tutsan, is a medicinal plant native to the Mediterranean basin and widespread across Europe and parts of the Middle East. It has a long history of traditional uses in folk medicine to treat respiratory diseases, wounds, and burns and to relieve migraine, rheumatism, and muscular pains. Despite numerous scientific studies shading light on the phytochemical profile and on the beneficial properties of the plant extracts, a comprehensive overview of the current knowledge is missing. In this paper, we summarized the available information on botany, traditional uses, phytochemistry, and pharmacological properties of Hypericum hircinum from peer-reviewed articles published till March 2025 in PubMed, ScienceDirect, Wiley, Springer, ACS, Scielo, and Web of Science databases. The presence of numerous valuable compounds, including terpenes, phenolic acids, flavonoids, and phloroglucinols, is reported as well as the wide range of pharmacological properties, such as antimicrobial, antifungal, antiviral, antidepressant, anti-collagenase, anti-α-glucosidase, and antioxidant activities, together with non-pharmacological properties. The data reported in this review contribute to a deeper understanding of the biological properties of the species and pave the way for further investigation of its potential application

    Selection of a New Highly Resistant Strain for Malolactic Fermentation under Difficult Conditions

    Get PDF
    Malolactic fermentation (MLF) is a biological process that contributes to wine quality, but it is frequently affectedby various vinification conditions. Resistance to four wine-limiting factors was studied with respect to 10 Oenococcusoeni strains in order to select a suitable strain for performing reliable MLF in difficult wines. Resistance to lowfermentation temperature, high SO2 and/or ethanol concentration, and low pH were assayed in laboratory tests. Apool of the most resistant strains was used in a set of laboratory MLFs. At the end of fermentation, the dominantstrains were identified by RAPD-PCR. The PN4 strain was found to be dominant in the majority of cases and underthe most detrimental wine conditions, and it was therefore chosen as the single-strain inoculum for the subsequentMLF trials. The effectiveness of the PN4 strain was confirmed in a series of MLFs carried out in three differentcountries under experimental and industrial conditions. It accomplished MLF in wines with up to 15.8% ethanol,pH as low as 3.0, 60 mg/L of free SO2, and in fermentation temperatures below 17ºC. Our findings indicate that theO. oeni PN4 strain could be an effective starter, guaranteeing regular and reliable MLF fermentation

    Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts

    Get PDF
    Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols

    Aerobic Exercise Alters the Melanoma Microenvironment and Modulates ERK5 S496 Phosphorylation

    Get PDF
    Exercise changes the tumor microenvironment by remodeling blood vessels and increasing infiltration by cytotoxic immune cells. The mechanisms driving these changes remain unclear. Herein, we demonstrate that exercise normalizes tumor vasculature and upregulates endothelial expression of VCAM1 in YUMMER 1.7 and B16F10 murine models of melanoma but differentially regulates tumor growth, hypoxia, and the immune response. We found that exercise suppressed tumor growth and increased CD8+ T-cell infiltration in YUMMER but not in B16F10 tumors. Single-cell RNA sequencing and flow cytometry revealed exercise modulated the number and phenotype of tumor-infiltrating CD8+ T cells and myeloid cells. Specifically, exercise caused a phenotypic shift in the tumor-associated macrophage population and increased the expression of MHC class II transcripts. We further demonstrated that ERK5 S496A knock-in mice, which are phosphorylation deficient at the S496 residue, mimicked the exercise effect when unexercised, yet when exercised, these mice displayed a reversal in the effect of exercise on tumor growth and macrophage polarization compared with wild-type mice. Taken together, our results reveal tumor-specific differences in the immune response to exercise and show that ERK5 signaling via the S496 residue plays a crucial role in exercise-induced tumor microenvironment changes. See related Spotlight by Betof Warner, p. 1158

    Brettanomyces bruxellensis yeasts: impact on wine and winemaking

    Get PDF
    Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles

    Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction

    Get PDF
    Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS), which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered

    Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates

    Get PDF
    The yeast Dekkera bruxellensis is a major contaminant of industrial fermentations, such as those used for the production of biofuel and wine, where it outlasts and, under some conditions, outcompetes the major industrial yeast Saccharomyces cerevisiae. In order to investigate the level of inter-strain variation that is present within this economically important species, the genomes of four diverse D. bruxellensis isolates were compared. While each of the four strains was shown to contain a core diploid genome, which is clearly sufficient for survival, two of the four isolates have a third haploid complement of chromosomes. The sequences of these additional haploid genomes were both highly divergent from those comprising the diploid core and divergent between the two triploid strains. Similar to examples in the Saccharomyces spp. clade, where some allotriploids have arisen on the basis of enhanced ability to survive a range of environmental conditions, it is likely these strains are products of two independent hybridisation events that may have involved multiple species or distinct sub-species of Dekkera. Interestingly these triploid strains represent the vast majority (92%) of isolates from across the Australian wine industry, suggesting that the additional set of chromosomes may confer a selective advantage in winery environments that has resulted in these hybrid strains all-but replacing their diploid counterparts in Australian winery settings. In addition to the apparent inter-specific hybridisation events, chromosomal aberrations such as strain-specific insertions and deletions and loss-of-heterozygosity by gene conversion were also commonplace. While these events are likely to have affected many phenotypes across these strains, we have been able to link a specific deletion to the inability to utilise nitrate by some strains of D. bruxellensis, a phenotype that may have direct impacts in the ability for these strains to compete with S. cerevisiae.Anthony R. Borneman, Ryan Zeppel, Paul J. Chambers, Chris D. Curti
    corecore