2,130 research outputs found
Short Employment Spells in Italy, Germany and the UK: Testing the Port of Entry Hypothesis
This paper looks at short employment spells in three European countries: Great Britain, whose labour market is considered the most flexible in the EU; Italy, regarded as the least flexible; and Germany, tightly regulated, but characterised by a deservedly famous apprenticeship system. In particular, it aims to assess whether young people in short-lived jobs stand a better chance of finding a 'good job' compared to their older colleagues. The increasingly held belief that - in modern economies - a 'bad job' at the beginning of one's career is the 'port-of-entry' to stable employment and to upward mobility, makes this assessment particularly relevant; ie it matters greatly if short-duration jobs are entry ports into better employment or become long term-traps. The lack of accepted benchmarks makes it difficult to reach strong conclusions in regard to the 'efficiency' of labour markets, however, this study should help to highlight the effect of different labour market institutions on mobility and on the soundness of the 'port-of-entry' hypothesis.
GalPak3D: A Bayesian parametric tool for extracting morpho-kinematics of galaxies from 3D data
We present a method to constrain galaxy parameters directly from
three-dimensional data cubes. The algorithm compares directly the data with a
parametric model mapped in coordinates. It uses the spectral
lines-spread function (LSF) and the spatial point-spread function (PSF) to
generate a three-dimensional kernel whose characteristics are instrument
specific or user generated. The algorithm returns the intrinsic modeled
properties along with both an `intrinsic' model data cube and the modeled
galaxy convolved with the 3D-kernel. The algorithm uses a Markov Chain Monte
Carlo (MCMC) approach with a nontraditional proposal distribution in order to
efficiently probe the parameter space. We demonstrate the robustness of the
algorithm using 1728 mock galaxies and galaxies generated from hydrodynamical
simulations in various seeing conditions from 0.6" to 1.2". We find that the
algorithm can recover the morphological parameters (inclination, position
angle) to within 10% and the kinematic parameters (maximum rotation velocity)
to within 20%, irrespectively of the PSF in seeing (up to 1.2") provided that
the maximum signal-to-noise ratio (SNR) is greater than pixel
and that the ratio of the galaxy half-light radius to seeing radius is greater
than about 1.5. One can use such an algorithm to constrain simultaneously the
kinematics and morphological parameters of (nonmerging) galaxies observed in
nonoptimal seeing conditions. The algorithm can also be used on adaptive-optics
(AO) data or on high-quality, high-SNR data to look for nonaxisymmetric
structures in the residuals.Comment: 16 pages, 10 figures, accepted to publication in AJ, revised version
after proofs corrections. Algorithm available at http://galpak.irap.omp.e
Gas and Dust Emission from the Nuclear Region of the Circinus Galaxy
Simultaneous modeling of the line and continuum emission from the nuclear
region of the Circinus galaxy is presented. Composite models which include the
combined effect of shocks and photoionization from the active center and from
the circumnuclear star forming region are considered. The effects of dust
reradiation, bremsstrahlung from the gas and synchrotron radiation are treated
consistently. The proposed model accounts for two important observational
features. First, the high obscuration of Circinus central source is produced by
high velocity and dense clouds with characteristic high dust-to-gas ratios.
Their large velocities, up to 1500 km\s, place them very close to the active
center. Second, the derived size of the line emitting region is well in
agreement with the observed limits for the coronal and narrow line region of
Circinus.Comment: 36 pages, LaTex (including 4 Tables and 9 figures), removed from
Abstract To appear in "The Astrophysical Journal
Integral field spectroscopy with SINFONI of VVDS galaxies. II. The mass-metallicity relation at 1.2 < z < 1.6
This work aims to provide a first insight into the mass-metallicity (MZ)
relation of star-forming galaxies at redshift z~1.4. To reach this goal, we
present a first set of nine VVDS galaxies observed with the NIR integral-field
spectrograph SINFONI on the VLT. Oxygen abundances are derived from empirical
indicators based on the ratio between strong nebular emission-lines (Halpha,
[NII]6584 and [SII]6717,6731). Stellar masses are deduced from SED fitting with
Charlot & Bruzual (2007) population synthesis models, and star formation rates
are derived from [OII]3727 and Halpha emission-line luminosities. We find a
typical shift of 0.2-0.4 dex towards lower metallicities for the z~1.4
galaxies, compared to the MZ-relation in the local universe as derived from
SDSS data. However, this small sample of eight galaxies does not show any clear
correlation between stellar mass and metallicity, unlike other larger samples
at different redshift (z~0, z~0.7, and z~2). Indeed, our galaxies lie just
under the relation at z~2 and show a small trend for more massive galaxies to
be more metallic (~0.1 logarithmic slope). There are two possible explanations
to account for these observations. First, the most massive galaxies present
higher specific star formation rates when compared to the global VVDS sample
which could explain the particularly low metallicity of these galaxies as
already shown in the SDSS sample. Second, inflow of metal-poor gas due to tidal
interactions could also explain the low metallicity of these galaxies as two of
these three galaxies show clear signatures of merging in their velocity fields.
Finally, we find that the metallicity of 4 galaxies is lower by ~0.2 to 0.4 dex
if we take into account the N/O abundance ratio in their metallicity estimate.Comment: 7 pages, 4 figures, accepted in A&A Comments: Comments: more accurate
results with better stellar mass estimate
Treatment of esophageal achalasia in children: Today and tomorrow
Esophageal achalasia (EA) is a rare esophageal motility disorder in children. Laparoscopic Heller myotomy (LHM) represents the treatment of choice in young patients. Peroral endoscopic myotomy (POEM) is becoming an alternative to LHM. The aim of this study is to evaluate the effectiveness, safety, and outcomes of POEM vs LHM in treatment of children with EA.
Data of pediatric patients with EA, who underwent LHM and POEM from February 2009 to December 2013 in two centers, were collected.
Eighteen patients (9 male, mean age: 11.6 years; range: 2-17 years) were included. Nine patients (6 male, mean age: 10.7 years; range: 2-16 years) underwent LHM, and the other 9 (3 males, mean age: 12.2 years; range: 6-17 years) underwent POEM procedure. Mean operation time was shorter in POEM group compared with LHM group (62/149 minutes). Myotomy was longer in POEM group than in LHM group (11/7 cm). One major complication occurred after LHM (esophageal perforation). No clinical and manometric differences were observed between LHM and POEM in follow-up. The incidence of iatrogenic gastroesophageal reflux disease was low (1 patient in both groups).
Results of a midterm follow-up show that LHM and POEM are safe and effective treatments also in children. Besides, POEM is a mini-invasive technique with an inferior execution timing compared to LHM. A skilled endoscopic team is mandatory to perform this procedur
The VIMOS VLT Deep Survey. The different assembly history of passive and star-forming L_B >= L*_B galaxies in the group environment at z < 1
We use the VIMOS VLT Deep Survey to study the close environment of galaxies
in groups at 0.2 = L*_B galaxies (Me_B =
M_B + 1.1z <= -20) are identified with Me_B <= -18.25 and within a relative
distance 5h^-1 kpc <= rp <= 100h^-1 kpc and relative velocity Delta v <= 500
km/s . The richness N of a group is defined as the number of Me_B <= -18.25
galaxies belonging to that group. We split our principal sample into red,
passive galaxies with NUV - r >= 4.25 and blue, star-forming galaxies with NUV
- r < 4.25. We find that blue galaxies with a close companion are primarily
located in poor groups, while the red ones are in rich groups. The number of
close neighbours per red galaxy increases with N, with n_red being proportional
to 0.11N, while that of blue galaxies does not depend on N and is roughly
constant. In addition, these trends are found to be independent of redshift,
and only the average n_blue evolves, decreasing with cosmic time. Our results
support the following assembly history of L_B >= L*_B galaxies in the group
environment: red, massive galaxies were formed in or accreted by the dark
matter halo of the group at early times (z >= 1), therefore their number of
neighbours provides a fossil record of the stellar mass assembly of groups,
traced by their richness N. On the other hand, blue, less massive galaxies have
recently been accreted by the group potential and are still in their parent
dark matter halo, having the same number of neighbours irrespective of N. As
time goes by, these blue galaxies settle in the group potential and turn red
and/or fainter, thus becoming satellite galaxies in the group. With a toy
quenching model, we estimate an infall rate of field galaxies into the group
environment of R_infall = 0.9 - 1.5 x 10^-4 Mpc^-3 Gyr^-1 at z ~ 0.7.Comment: Astronomy and Astrophysics, in press. 11 pages, 11 figures, 4 tables.
Minor changes with respect to the first versio
Chemical abundances in spiral and irregular galaxies. O and N abundances derived from global emission--line spectra
The validity of oxygen and nitrogen abundances derived from the global
emission-line spectra of galaxies via the P-method has been investigated using
a collection of published spectra of individual HII regions in irregular and
spiral galaxies. The conclusions of Kobulnicky, Kennicutt & Pizagno (1999) that
global emission-line spectra can reliably indicate the chemical properties of
galaxies has been confirmed. It has been shown that the comparison of the
global spectrum of a galaxy with a collection of spectra of individual HII
regions can be used to distinguish high and low metallicity objects and to
estimate accurate chemical abundances in a galaxy. The oxygen and nitrogen
abundances in samples of UV-selected and normal nearby galaxies have been
determined. It has been found that the UV-selected galaxies occupy the same
area in the N/O -- O/H diagram as individual HII regions in nearby galaxies.
Finally, we show that intermediate-redshift galaxies systematically deviate
from the metallicity -- luminosity trend of local galaxies.Comment: 15 pages, 17 figures, accepted for publication in Astronomy and
Astrophysic
Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems
We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm2 together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems)
Modeling RR Tel through the Evolution of the Spectra
We investigate the evolution of RR Tel after the outburst by fitting the
emission spectra in two epochs. The first one (1978) is characterized by large
fluctuations in the light curve and the second one (1993) by the slow fading
trend. In the frame of a colliding wind model two shocks are present: the
reverse shock propagates in the direction of the white dwarf and the other one
expands towards or beyond the giant. The results of our modeling show that in
1993 the expanding shock has overcome the system and is propagating in the
nearby ISM. The large fluctuations observed in the 1978 light curve result from
line intensity rather than from continuum variation. These variations are
explained by fragmentation of matter at the time of head-on collision of the
winds from the two stars. A high velocity (500 km/s) wind component is revealed
from the fit of the SED of the continuum in the X-ray range in 1978, but is
quite unobservable in the line profiles. The geometrical thickness of the
emitting clumps is the critical parameter which can explain the short time
scale variabilities of the spectrum and the trend of slow line intensity
decrease.Comment: 26 pages, LaTeX (including 5 Tables) + 6 PostScript figures. To
appear in "The Astrophysical Journal
Large area silicon photomultipliers allow extreme depth penetration in time-domain diffuse optics
We present the design of a novel single-photon timing module, based on a Silicon Photomultiplier (SiPM) featuring a collection area of 9 mm2. The module performs Single-Photon Timing Resolution of about 140 ps, thus being suitable for diffuse optics application. The small size of the instrument (5 cm × 4 cm × 10 cm) allows placing it directly in contact with the sample under investigation, maximizing that way the signal harvesting. Thanks to that, it is possible to increase the source detector distance up to 6 cm or more, therefore enhancing the penetration depth up to an impressive value of 4 cm and paving the way to the exploration of the deepest human body structures in a completely non-invasive approach
- …
