9,918 research outputs found
Preliminary designs for X-ray source modifications for the Marshall Space Flight Center's X-ray calibration facility
The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region
Unified model of ultracold molecular collisions
A scattering model is developed for ultracold molecular collisions, which
allows inelastic processes, chemical reactions, and complex formation to be
treated in a unified way. All these scattering processes and various
combinations of them are possible in ultracold molecular gases, and as such
this model will allow the rigorous parametrization of experimental results. In
addition we show how, once extracted, these parameters can be related to the
physical properties of the system, shedding light on fundamental aspects of
molecular collision dynamics.Comment: 16 Pages, 5 Figure
Neglected tropical diseases in the genomics era: re-evaluating the impact of new drugs and mass drug administration.
Simon Croft answers Genome Biology's questions on ways to approach neglected tropical diseases in the genomics era, including re-evaluating the impact of new drugs and mass drug administration
Still in My Mind: An Exploration of Practice-led Experimental Research in Progress
The author, an Indigenous woman of mixed heritage, aGurindji/Malgnin/Mudpurra person on her father’s side discusses her practice-led research project, Still in My Mind: Gurindji Experience, Location and Visuality. This project draws inspiration from the words of revered Gurindji elder Vincent Lingiari, profoundly reiterating a deep commitment to his Gurindji/Malgnin peoples and their homelands on Wave Hill in the Northern Territory
Leishmaniasis: new approaches to disease control.
The leishmaniases afflict the world's poorest populations. Among the two million new cases each year in the 88 countries where the disease is endemic (fig 1), it is estimated that 80% earn less than $2 a day. Human infections with Leishmania protozoan parasites, transmitted via the bite of a sandfly, cause visceral, cutaneous, or mucocutaneous leishmaniasis. The global burden of leishmaniasis has remained stable for some years, causing 2.4 million disability adjusted life years (DALYs) lost and 59 000 deaths in 2001. Neglected by researchers and funding agencies, leishmaniasis control strategies have varied little for decades, but in recent years there have been exciting advances in diagnosis, treatment, and prevention. These include an immunochromatographic dipstick for diagnosing visceral leishmaniasis; the licensing of miltefosine, the first oral drug for visceral leishmaniasis; and evidence that the incidence of zoonotic visceral leishmaniasis in children can be reduced by providing dogs with deltamethrin collars. There is also hope that the first leishmaniasis vaccine will become available within a decade. Here we review these developments and identify priorities for research
On the Search for Quasar Light Echoes
The UV radiation from a quasar leaves a characteristic pattern in the
distribution of ionized hydrogen throughout the surrounding space. This pattern
or light echo propagates through the intergalactic medium at the speed of
light, and can be observed by its imprint on the Ly-alpha forest spectra of
background sources. As the echo persists after the quasar has switched off, it
offers the possibility of searching for dead quasars, and constraining their
luminosities and lifetimes. We outline a technique to search for and
characterize these light echoes. To test the method, we create artificial
Ly-alpha forest spectra from cosmological simulations at z=3, apply light
echoes and search for them. We show how the simulations can also be used to
quantify the significance level of any detection. We find that light echoes
from the brightest quasars could be found in observational data. With
absorption line spectra of 100 redshift z~3-3.5 quasars or galaxies in a 1
square degree area, we expect that ~10 echoes from quasars with B band
luminosities L_B=3x10^45 ergs/s exist that could be found at 95% confidence,
assuming a quasar lifetime of ~10^7 yr. Even a null result from such a search
would have interesting implications for our understanding of quasar
luminosities and lifetimes.Comment: 9 pages, 7 figures, ApJ in pres
Predictive learning, prediction errors, and attention: evidence from event-related potentials and eye tracking
Prediction error (‘‘surprise’’) affects the rate of learning: We learn more rapidly about cues for which we initially make incorrect predictions than cues for which our initial predictions are correct. The current studies employ electrophysiological measures to reveal early attentional differentiation of events that differ in their previous involvement in errors of predictive judgment.
Error-related events attract more attention, as evidenced by features of event-related scalp potentials previously implicated in selective visual attention (selection negativity, augmented anterior N1). The earliest differences detected occurred around 120 msec after stimulus onset, and distributed source localization (LORETA)
indicated that the inferior temporal regions were one source of the earliest differences. In addition, stimuli associated with the production of prediction errors show higher dwell times in an eyetracking procedure. Our data support the view that early attentional processes play a role in human associative learning
Leishmania and other intracellular pathogens: selectivity, drug distribution and PK-PD.
New drugs and treatments for diseases caused by intracellular pathogens, such as leishmaniasis and the Leishmania species, have proved to be some of the most difficult to discover and develop. The focus of discovery research has been on the identification of potent and selective compounds that inhibit target enzymes (or other essential molecules) or are active against the causative pathogen in phenotypic in vitro assays. Although these discovery paradigms remain an essential part of the early stages of the drug R & D pathway, over the past two decades additional emphasis has been given to the challenges needed to ensure that the potential anti-infective drugs distribute to infected tissues, reach the target pathogen within the host cell and exert the appropriate pharmacodynamic effect at these sites. This review will focus on how these challenges are being met in relation to Leishmania and the leishmaniases with lessons learned from drug R & D for other intracellular pathogens
Ionizing radiation fluctuations and large-scale structure in the Lyman-alpha forest
We investigate the large-scale inhomogeneities of the hydrogen ionizing
radiation field in the Universe at redshift z=3. Using a raytracing algorithm,
we simulate a model in which quasars are the dominant sources of radiation. We
make use of large scale N-body simulations of a LambdaCDM universe, and include
such effects as finite quasar lifetimes and output on the lightcone, which
affects the shape of quasar light echoes. We create Lya forest spectra that
would be generated in the presence of such a fluctuating radiation field,
finding that the power spectrum of the Lya forest can be suppressed by as much
as 15 % for modes with k=0.05-1 Mpc/h. This relatively small effect may have
consequences for high precision measurements of the Lya power spectrum on
larger scales than have yet been published. We also investigate another
radiation field probe, the cross-correlation of quasar positions and the Lya
forest. For both quasar lifetimes which we simulate (10^7 yr and 10^8 yr), we
expect to see a strong decrease in the Lya absorption close to other quasars
(the ``foreground'' proximity effect). We then use data from the Sloan Digital
Sky Survey First Data Release to make an observational determination of this
statistic. We find no sign of our predicted lack of absorption, but instead
increased absorption close to quasars. If the bursts of radiation from quasars
last on average < 10^6 yr, then we would not expect to be able to see the
foreground effect. However, the strength of the absorption itself seems to be
indicative of rare objects, and hence much longer total times of emission per
quasar. Variability of quasars in bursts with timescales > 10^4yr and < 10^6 yr
could reconcile these two facts.Comment: Submitted to ApJ, 21 pages, 17 postscript figures, emulateapj.st
- …
