484 research outputs found
Experimental Test of the Dynamical Coulomb Blockade Theory for Short Coherent Conductors
We observed the recently predicted quantum suppression of dynamical Coulomb
blockade on short coherent conductors by measuring the conductance of a quantum
point contact embedded in a tunable on-chip circuit. Taking advantage of the
circuit modularity we measured most parameters used by the theory. This allowed
us to perform a reliable and quantitative experimental test of the theory.
Dynamical Coulomb blockade corrections, probed up to the second conductance
plateau of the quantum point contact, are found to be accurately normalized by
the same Fano factor as quantum shot noise, in excellent agreement with the
theoretical predictions.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Dynamical Coulomb blockade of multiple Andreev reflections
We analyze the dynamical Coulomb blockade of multiple Andreev reflections
(MAR) in a superconducting quantum point contact coupled to a macroscopic
impedance. We find that at very low transmission the blockade scales as
with , where is the bias voltage and is the
superconducting gap, as it would correspond to the occurrence of "shots" of
charge . For higher transmission the blockade is reduced both due to Pauli
principle and to elastic renormalization of the MAR probability, and for
certain voltage regions it may even become an "antiblockade", i.e. the current
is enhanced due to the coupling with the electromagnetic environment.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let
A one-channel conductor in an ohmic environment: mapping to a TLL and full counting statistics
It is shown that a one-channel mesoscopic conductor in an ohmic environment
can be mapped to the problem of a backscattering impurity in a
Tomonaga-Luttinger liquid (TLL). This allows to determine non perturbatively
the effect of the environment on curves, and to find an exact
relationship between dynamic Coulomb blockade and shot noise. We investigate
critically how this relationship compares to recent proposals in the
literature. The full counting statistics is determined at zero temperature.Comment: 5 pages, 2 figures, shortened version for publication in Phys. Rev.
Let
Inelastic Interaction Corrections and Universal Relations for Full Counting Statistics
We analyze in detail the interaction correction to Full Counting Statistics
(FCS) of electron transfer in a quantum contact originating from the
electromagnetic environment surrounding the contact. The correction can be
presented as a sum of two terms, corresponding to elastic/inelastic electron
transfer. Here we primarily focus on the inelastic correction.
For our analysis, it is important to understand more general -- universal --
relations imposed on FCS only by quantum mechanics and statistics with no
regard for a concrete realization of a contact. So we derive and analyze these
relations. We reveal that for FCS the universal relations can be presented in a
form of detailed balance. We also present several useful formulas for the
cumulants.
To facilitate the experimental observation of the effect, we evaluate
cumulants of FCS at finite voltage and temperature. Several analytical results
obtained are supplemented by numerical calculations for the first three
cumulants at various transmission eigenvalues.Comment: 10 pages, 3 figure
Superconducting Quantum Point Contacts
We review our experiments on the electronic transport properties of atomic
contacts between metallic electrodes, in particular superconducting ones.
Despite ignorance of the exact atomic configuration, these ultimate quantum
point contacts can be manipulated and well characterized in-situ. They allow
performing fundamental tests of the scattering theory of quantum transport. In
particular, we discuss the case of the Josephson effect
Analytic morphomics identifies predictors of new‐onset diabetes after liver transplantation
Among liver transplant recipients, development of post‐transplant complications such as new‐onset diabetes after transplantation (NODAT) is common and highly morbid. Current methods of predicting patient risk are inaccurate in the pre‐transplant period, making implementation of targeted therapies difficult. We sought to determine whether analytic morphomics (using computed tomography scans) could be used to predict the incidence of NODAT. We analyzed peri‐transplant scans from 216 patients with varying indications for liver transplantation, among whom 61 (28%) developed NODAT. Combinations of visceral fat, subcutaneous fat, and psoas area were considered in addition to traditional risk factors. On multivariate analysis adjusting for usual risk factors such as type of immunosuppression, subcutaneous fat thickness remained significantly associated with NODAT (OR = 1.43, 95% CI 1.00–1.88, p = 0.047). Subgroup analysis showed that patients with later‐onset of NODAT had higher visceral fat, whereas subcutaneous fat thickness was more correlated with earlier‐onset of NODAT (using 10 months post‐transplant as the cut‐off).ConclusionAnalytic morphomics may be used to help assess NODAT risk in patients undergoing liver transplantation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111210/1/ctr12537.pd
Subharmonic Shapiro steps and assisted tunneling in superconducting point contacts
We analyze the current in a superconducting point contact of arbitrary
transmission in the presence of a microwave radiation. The interplay between
the ac Josephson current and the microwave signal gives rise to Shapiro steps
at voltages V = (m/n) \hbar \omega_r/2e, where n,m are integer numbers and
\omega_r is the radiation frequency. The subharmonic steps (n different from 1)
are a consequence of the ocurrence of multiple Andreev reflections (MAR) and
provide an unambiguous signature of the peculiar ac Josephson effect at high
transmission. Moreover, the dc current exhibits a rich subgap structure due to
photon-assisted MARs.Comment: Revtex, 4 pages, 4 figure
Direct link between Coulomb blockade and shot noise in a quantum coherent structure
We analyze the current-voltage characteristic of a quantum conduction channel
coupled to an electromagnetic environment of arbitrary frequency-dependent
impedance. In the weak blockade regime the correction to the ohmic behavior is
directly related to the channel current fluctuations vanishing at perfect
transmission in the same way as shot noise. This relation can be generalized to
describe the environmental Coulomb blockade in a generic mesoscopic conductor
coupled to an external impedance, as the response of the latter to the current
fluctuations in the former.Comment: 12 pages, 2 figures, submitted to Phys. Rev. Let
The number of transmission channels through a single-molecule junction
We calculate transmission eigenvalue distributions for Pt-benzene-Pt and
Pt-butadiene-Pt junctions using realistic state-of-the-art many-body
techniques. An effective field theory of interacting -electrons is used to
include screening and van der Waals interactions with the metal electrodes. We
find that the number of dominant transmission channels in a molecular junction
is equal to the degeneracy of the molecular orbital closest to the metal Fermi
level.Comment: 9 pages, 8 figure
Cancer risk in childhood-onset systemic lupus
INTRODUCTION: The aim of this study was to assess cancer incidence in childhood-onset systemic lupus erythematosus (SLE). METHODS: We ascertained cancers within SLE registries at 10 pediatric centers. Subjects were linked to cancer registries for the observational interval, spanning 1974 to 2009. The ratio of observed to expected cancers represents the standardized incidence ratio (SIR) or relative cancer risk in childhood-onset SLE, versus the general population. RESULTS: There were 1020 patients aged <18 at cohort entry. Most (82%) were female and Caucasian; mean age at cohort entry was 12.6 years (standard deviation (SD) = 3.6). Subjects were observed for a total of 7,986 (average 7.8) patient-years. Within this interval, only three invasive cancers were expected. However, 14 invasive cancers occurred with an SIR of 4.7, 95% confidence interval (CI) 2.6 to 7.8. Three hematologic cancers were found (two non-Hodgkin’s lymphoma, one leukemia), for an SIR of 5.2 (95% CI 1.1 to 15.2). The SIRs stratified by age group and sex, were similar across these strata. There was a trend for highest cancer occurrence 10 to 19 years after SLE diagnosis. CONCLUSIONS: These results suggest an increased cancer risk in pediatric onset SLE versus the general population. In absolute terms, this represents relatively few events. Of note, risk may be highest only after patients have transferred to adult care
- …
