23,106 research outputs found
Materials technology advancement program for expandable manned space structures Final report
Composite materials tests for expandable manned space structures including flammability, micrometeoroid impact, thermal shock, and tear, puncture, and fungus resistanc
Materials technology advancement program for expandable manned space structures Summary report
Composite materials testing for fire resistant wall structures for expandable manned space structure
Study of operational parameters impacting helicopter fuel consumption
A computerized study of operational parameters affecting helicopter fuel consumption was conducted as an integral part of the NASA Civil Helicopter Technology Program. The study utilized the Helicopter Sizing and Performance Computer Program (HESCOMP) developed by the Boeing-Vertol Company and NASA Ames Research Center. An introduction to HESCOMP is incorporated in this report. The results presented were calculated using the NASA CH-53 civil helicopter research aircraft specifications. Plots from which optimum flight conditions for minimum fuel use that can be obtained are presented for this aircraft. The results of the study are considered to be generally indicative of trends for all helicopters
Heat Transport in Mesoscopic Systems
Phonon heat transport in mesoscopic systems is investigated using methods
analogous to the Landauer description of electrical conductance. A "universal
heat conductance" expression that depends on the properties of the conducting
pathway only through the mode cutoff frequencies is derived. Corrections due to
reflections at the junction between the thermal body and the conducting bridge
are found to be small except at very low temperatures where only the lowest few
bridge modes are excited. Various non-equilibrium phonon distributions are
studied: a narrow band distribution leads to clear steps in the cooling curve,
analogous to the quantized resistance values in narrow wires, but a thermal
distribution is too broad to show such features.Comment: To be published in Superlattices and Microstructures, special issue
in honor of Rolf Landauer, March 198
The stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid
The stochastic response of nanoscale oscillators of arbitrary geometry
immersed in a viscous fluid is studied. Using the fluctuation-dissipation
theorem it is shown that deterministic calculations of the governing fluid and
solid equations can be used in a straightforward manner to directly calculate
the stochastic response that would be measured in experiment. We use this
approach to investigate the fluid coupled motion of single and multiple
cantilevers with experimentally motivated geometries.Comment: 5 pages, 5 figure
- …
