62,004 research outputs found
New Physics and novel Higgs signals
We review some of the results of our recent work dealing with the novel type
of Higgs signals that arise when one considers extensions of the standard
model.
We discuss first possible deviations on the Higgs couplings due to heavy
particles, in the context of the MSSM and with large extra-dimensions. Then, we
present several models where it is possible to induce flavor violating Higgs
couplings, and probe them at future hadron colliders through the LFV Higgs
decay h-> tau mu or with rare top decays.Comment: Talk given at the X Mexican School of Particles and Fields, Playa del
Carmen, Mexico, 200
Top-Quark FCNC Decay t->cgg in Topcolor-assisted Technicolor Model
The topcolor-assisted technicolor (TC2) model predicts several pseudo-scalars
called top-pions and at loop level they can induce the FCNC top quark decay
t->cgg which is extremely suppressed in the Standard Model (SM). We find that
in the allowed parameter space the TC2 model can greatly enhance such a FCNC
decay and push the branching ratio up to 10^{-3}, which is much larger than the
predictions in the SM (10^{-9}) and in the minimal supersymmetric model
(10^{-4}). We also compare the result with the two-body FCNC decay t-> cg and
find that the branching ratio of t-> cgg is slightly larger than t-> cg. Such
enhanced FCNC top quark decays may serve as a good probe of TC2 model at the
future top quark factory.Comment: 11 pages, 4 figure
A new method to find the potential center of N-body systems
We present a new and fast method to nd the potential center of an N-body
distribution. The method uses an iterative algorithm which exploits the fact that
the gradient of the potential is null at its center: it uses a smoothing radius to
avoid getting trapped in secondary minima. We have tested this method on several
random realizations of King models (in which the numerical computation of this
center is rather dicult, due to the constant density within their cores), and com-
pared its performance and accuracy against a more straightforward, but computer
intensive method, based on cartesian meshes of increasing spatial resolution. In all
cases, both methods converged to the same center, within the mesh resolution, but
the new method is two orders of magnitude faster.
We have also tested the method with one astronomical problem: the evolu-
tion of a 105 particle King model orbiting around a xed potential that represents
our Galaxy. We used a spherical harmonics expansion N-body code, in which the
potential center determination is crucial for the correct force computation. We
compared this simulation with another one in which a method previously used to
determine the expansion center is employed (White 1983). Our routine gives better
results in energy conservation and mass loss.Fil: Aguilar, L. A.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Cruz, F.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Carpintero, Daniel Diego. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin
A Rotating Charged Black Hole Solution in f(R) Gravity
In the context of f(R) theories of gravity, we address the problem of finding
a rotating charged black hole solution in the case of constant curvature. The
new metric is obtained by solving the field equations and we show that the
behavior of it is typical of a rotating charged source. In addition, we analyze
the thermodynamics of the new black hole. The results ensures that the
thermodynamical properties in f(R) gravities are qualitatively similar to those
of standard General Relativity.Comment: 9 pages, no figure
Young Brown Dwarfs as Giant Exoplanet Analogs
Young brown dwarfs and directly-imaged exoplanets have enticingly similar
photometric and spectroscopic characteristics, indicating that their cool, low
gravity atmospheres should be studied in concert. Similarities between the
peculiar shaped H band, near and mid-IR photometry as well as location on color
magnitude diagrams provide important clues about how to extract physical
properties of planets from current brown dwarf observations. In this proceeding
we discuss systems newly assigned to 10-150 Myr nearby moving groups, highlight
the diversity of this uniform age-calibrated brown dwarf sample, and reflect on
their implication for understanding current and future planetary data.Comment: 5 pages, 3 figures. Proceedings for the conference "Brown dwarfs come
of age", 2013 May 20-24, to be published in Memorie della Societa Astronomica
Italian
- …
